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FOREWORD

The Conference on Computer Criented Analysis of Shell Structures,
sponsored jointly by Lockheed Missiles & Space Company and Air Force
Flight Dynamics Laboratory, was held at the Loockheed Palo Altc Research
Laboratovy in Ta.o Alto, California, on 10-14 August 1970. The primary
objective of the conference was to bring together specialists in the field of
computer analysis of shells and shell-like structures for an exchange of
informatinn through the presentation of papers, panel discugsions and
informal discussions. Particular emphasis was placed on recent develop-
ments in discrete methods for analyzing the static and dynamic responsz
of shell structures and on the related problems of computer technology,

numerical analysis and applications to enginecering problerns.

The conference was attended by 161 persons: 83 from industrial

organizations, 45 from universities and 31 from government agencies.

Twenty-seven invited papers were presented at the conference in
13 sessions as indicated on page viii. In addition there were three panel
discussions: Meeting the Deraands of Advancing Aerospace Technology,
Finite Elr ment Versus Finite Differences, and the Large General Purpose
Cormputer Code. Extensive discussions followed each paper and these
were tape recorded. The tapes were later transcribed and edited and
are included in these proceedings following the appropriate paper. The
panel discussions were also tape recorded, transcribed and edited and
ar> also included, Considerable liberties were taiten by the editor in
order to condense the discussion, and for that reason most comments and
questions are printed anonymously. Where names are mentioned, taese
people were given the opportunity to examine and approve the edited ver-

sion,

This report zontains the proceedings of the conference. These pro-

ceedings were prepared by the Lockheed Palo Alto Research Laboratory,

iii
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Palo Alto, Califorania, under Air Force Contract No. F33615-69-C~1523.
It was administered under the Structures Division, Air Force Flight
Dynamics Laboratory with Mr. T. N. Bernstein (FDTR) acting as Pro-
ject Ergineer. The proceedings were edited by Dr. Richard F. Hartung,
Manager, Structural Mechanics Laboratory, LMSC,
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This report has been reviewed and is approved.
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FRANC , JR,

Chief, Sclid Mechanics Branch
Air Force Flight Dynamics Laboratory
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HAROLD C. MARTIN MEMCRIAL

It seems especially appropriate that the present volume, In consideration

of its content, should contaln some words of appreciation in memory of

Dr. H'arold C. Martin. Because of his professional involvement over the
past thirty year period in the field of structural engineering - as practicing
enginver, <«ducator, research worker, author and consultant - it was inevitable
that a symposium devoted to numerical shell analysis should include a large

number of his friends, former students, and co-workers among its participants.

Harold was born in Brooklyn, New York on March 30, 1913. He attended

the public schools in that area through high school and continued his education
at New York University, whore, in 1934 and 1937 respectively, he received a
B.S. degree in Mechanical Engineerlng and a M.S. degree in Aeroncutical
Engineering, The next two years were spent at Boeing in Seattle, followed by
two years as a stress analyst at Republic Aviation in Farmingdale. He returned
to New York Uriversity as Instructor in Aeronautics in 1941, and thereafter

his primary occupation was in enginaering education and resaarch. In 1942 he
moved to Princeton as Instructor In Aeronautics. During the period 1944 to 1948
he served as Instructor and Research Assistant in Aeronautics at the California
institute of Technology, while completing most of the requirements for the PhD
degree. In 1948 he bagan his career at the University of Washington as Associ=
ate Professcr in Aeronauticol Engineering, and he retalnea his affiliation with
the University until the time of his death on August 23, 1970, After completing
his thesls, “Elastic Instability of Deep Cantilever Struts Under Combined Axial
and Shear Loads at the Free End,” he was awarded the PhD from the California
Institute of Technology in 1950. In 1952 he wa: promoted to the rank of
Professor at Washington, and from 1957 through 1960 he served as Department
Head in Aeronautical Engineering. While at Washington, he also served at
various times as Visiting Professor at the University of Hawaii and at Stanford
University. Starting in 1952, he was a technical consultant in structural analysis
at The Boeing Company .
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3 Throughout his professional career Harold's interests were concentrated in the area of
structural analysis. These interests did not toke the form of o dedication to exact
anclysis as an end in itself, but clearly originated from a since e baltz{ in the inherent

: worth of anal -tical eftort. Harold was convinced that analytical methods constitute

an importai:s ' o) for solving practical problems and that the social value of engineer-
ing arcomplishments resulting from such endeavor provides a valid mo'  .2iun for the
work . During the years of World War |l and those immediately following, his research
and teaching were muinly concerned with stability analysis and applications of the
thenry of elasticity . It was a natural cutgrowth of his practical motivation that Harold
~aca: ~ greatly ii.'rigued by the potentialities of matrix methods in conjunction with
wiah sp-3d digital computers for tha analvsis of complex structures. Subsequent to 1953,

k-1 s Y L icentrate. principally in this area.

Withn, .2 available space ii is impossible to give a complete account of Harold's
technical accomplishments and publications. Therefora, we shall only mention three
..nportant wo'ks. In 1953 Harold and several colieagues began work on the formulation

and i Jemertation of the finite element displacement raethod. This work led to the

paper, "Stiffness and Deflection Analysis of Complex Structures, ' published in 1956

in the Journal of The Aeronautical Sciences, and pioneerad the application of the

T Ll FRATs Ta Doa e

finite element structurai analysis approach which has had world-wide application in
recent years. Anothar pcper, "On the Derivation of Stiffness Matrices for the Analysis
4 of Large Deflection and Stability Problems" (Proceedings of the Conference on Matrix

‘ Methods in Structural Mechanics, Wright-Patterson Air Force Base, 26-28 October,
1965) deals with large deflection and geometrically nonlinear problems in finite element
analysis; it contains a clear exposition of the fundamentcl princioles of this subject

and a historical review of its develcoment prior to 1965, The third work is the excel-
lent textbook Iniroduction to Matrix Methods of Structural Analysis, McGraw-Hill,
1966. The dedication of this book is ¢ clecr statement of the professional philosophy

of its author; the statement is: “This book is dedicated to the structural engineer who,
by using his talents and knowledge, benefits mankind."
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Although he did not cften volunteer his opinions on religious matters, it was

apparent to all who knew him well that Harold had sincere Thristian convictions

i
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and that these convictions wers the primary foundation of his philesophy of

life. He expressed genuine love for human life, and concern ovar the problems

fccing people today, resulting from the pressure of increasing world population

' and from the moral and spiritual degeneration of society. He felt that most of
the problems of man could be solved if men would have true consideration for
others, and if they would approach problems with the conviction that a reasoned

' attitude would lead to a reasonable solution. He was disturbed and disappointod

to find that others often did not share these views.

7 Among the reminiscances of those who knew him well there is the common

7 message that Harold was ¢ valued friend, one whose passing is felt as a definite
loss. Harold was o stimulating colleague, and it was always a pleasure to be

with him. He was sincerely interested in people, and he took time to listen to

i what they had to say. He was loyel to friend and acquaintance alike. Harold's

3 friends were many; they came from diverse walks of life; and they all valued his

friendship. Harold deeply appreciated his friendships and associctions; they

were an essential part of his life.

E This memorial is closed with a quotation from the Bible. It was one of Harold's
favorites, and it describes him and his philosophy more clearly than the many

3 words written above.

G ‘ Micah 6:8

: f He has showed you, O man, what is good;
; and what does the Lord require of you

4 ! but to do justice, and to love kindness,

i and to walk humbly with your God?

&
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OPENING REMARKS

DR, GRIFFITH: Good morning, ladies and gentlemen,

On behalf of the rnanagement and staff of the Lockheed Missiles and Space
Company, it is my privilege to bid you welcome for the five d.'rs of this
conference. We're honored to be your hosts for these meetings at our
Palo Alto Research Laboratory. Particular note needs to be made of

the instrumental role of the Air Force Flight Dynamics Laboratory in
making this conference possible. Without their foresight and wisdom, it
would have been impossible to hold this conference and we're very grate~
ful to the Flight Dynamics Laboratory for what they have done and what
they will do during the course of our meetings. We must also recognize
the additional role of the Flight Dynamics Laboratory within their own
laboratories and the support that they have given to studies in other parts
of the services, in industry and in our universities for development of the
subject, Without that we wonld have a far less rich topic to cover this

week,

In these acrimonious tirnes we hear a good deal about the "military-industrial
complex, ' and I think it is impoxrtant to note that the weeks' program will
shed some light on this whole subject in terms of what is right and what is
wrong with the charges. Certainly to oversimplify is wrong and I would
claim tkat in using the term ianilitary-industrial, the matter has been over-
simplified. Clearly it should be expanded. As one sees both from the

program and the roster of registrants, the correct descriptor is "military-




industry-university complex'’; and I urge you academic representatives to
insist upon your full share of the action., In another regard, however, I
think the designation is indeed correct. Certainly our relationships as
institutions with one another and even amongst ourselves and the problems
that we work on are certainly complex and we do have a very valid asser-

tion.

In shell analysis there are two fundamental questions which one addresses
himself to. Both of these will be recurring themes through the papers and
the panel discussions and summary remark~ that you will have during the
week. The first question would appear to be: What is the correct mathe-
matical description of a real structure and the properties of the materials
from which that structure is made? And the second underlying question
is: How accurately can these mathematical representations be analyzed
at reasonable cost and in reasonable time to predict and understand the
behavior of the structures which the mathematics describes? I believe
that you will find the material to be presented this week will add a great
deal of information and understanding on an approach to answering these

two questions.

COL, J. R, MYERS: The primary objective of this conference is
to present and promote, if you will, the moat recent developments in
structural shell analvsis. As I understand it, emphasis will be placed on
numerical methods and the associated computer technology required to
apply these analyses to practical engineering problems and, gentlemen,
let me repeat that last phrase--required to apply these analyses to practi-

cal engineering problems. Within the last several months we have seen a

i At
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number of new starts within the Air Force. The F15, the Bl advanced
bomber, AWAC, AX, and g0 on. Now these aircraft as such will be in
environments that are really going to press us and we haven't solved

some of the current problems as yet.

As most of you know, Lockheed has been working under Air Force contract
during the past year in order to assess current shell analysis capability
throughout the United States. Many of the organizations represented here
this morning have been interviewed and this conference is being held so
9 that you may share the wealth of general information, valuable experience,

unpublished ideas that have been uncovered during this study.

Most of us here today are concerned with research and development needs

£ b g 3 Firt b g AT ) L
TV VIR TS LR TS

and are keenly aware of the current R&D climate which confronis us. In

AT

this regard, I would like ¢ > qrote from re.narks made by Gen. Ferguson
at the recent Fatigue and Fracture Conference held at Miami Beach last

December (1969).

T THEFATEN RN

"The causes for the present anti-military climate are

! numerous, divergent and sometimes only marginally re-

PG TR F o & b

lated. Nonetheless, military and military-related activi-

S

ties present such a large and obvious target that all sorts
of diverse dissatisfactions converge upon the man in uni-

form, and all those in any way associated with i{t--univer-

e

sities as well. If nothing succeeds like success, success
A in the case of the military R and D would appcar to hava

: succeeded a little too well, Certainly a strong case could

be made that the so-zalled militery-industrial complex

k.
a has helped the United States to survive, to grow and pros-
¥
b: per in a hostile world, but the very essence of art, it is
5 said, is to hid the labor that went into its creation. And
3
! !
3 ; 3
i
Y
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so having succeeded 8o well in countering every threat

to our national security, we have perhaps made it seem
that there is no threat. Or that we are internally immune
from any external threats. At a time when the Soviets
are expanding in every area of research, development and
production of weapon systems and Red China is testing
missiles to deliver its nuclear warheads, many elements
in the United States are turning against defense research

and development. "

We in research and development face some lean years in spite of increased
responsibility. We've got to achieve our technological goals for advanced
systemns with fewer resources. This will be the real challenge to our
creativeness, ingenuity and resourcefulness. Gentlemen, during the past
several years, I have fostered this business of computer techniques as
applied to shells because, in my own mind as Chief of the Lab, I think that
this is an opportunity for high payoffs to this country. : think you've got

kind of an exciting week ahead of you. Thank you very much for coming.

Dt omar LY A pase S n ¥,
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DESIGN PROEBLEMS OF SHELL STRUCTURES AND
THE IMPACT OF THE COMPUTER ON SHELL ANALYSIS

By Manuel Stein

NASA Langley Research Center
Hampton, Virglnia

SUMMARY

A brief description of the essentlial nature of shell theory and the shell
equations 1s followed by a survey, with examplez; of the types of shell
problems that are of important concern to the structural designer and, therefore,
of interest to the shell analyst. The principal approaches to the shell problem
gsolution are outlined and some of the important effects that the computer has
had on shell analysis and the analyst are discusseu. Deficlencies in shell
technology, requiring additional research, are indicated.

INTRODUCTION

Solutions of problems in shell structures were attempted as early as 1Thk
by Euler (see ref. 1). Such problems were among those which motivated the
formulation of the general equations of elasticity by Navier in 1821. In 1850
Kirchhoff developed the theory of plates, and this theory was used by Aron in
1874 to develop the first theory of shells. Some inaccuracies in Aron's theory
were found and corrected by Love in 1888 (see rof. 2). The theory of shells
based on the hypotheses of Kirchhoff and the development by Love is not unique,
and many other formulations have been developed. In 1960, Koiter (ref. 3)
defined a criterion for judging the accuracy of linear shell theories, and
showed that most other theories differ from Love's by irsignificant terms only.

For the benefit of those people who are not shell experts, this paper gives
the engineering definition of a shell, describes the basic ideas which lead to
the theory of shells, and discusses some important problems facing the designer
of shell structures. A number of examples will be given to illustrate the kinds
of problems involved in the analysis of shells. A second objective is to

characterize the two principal approaches to obtaining solutions to the shell
equations.

Because of the extreme complexity of shell theory, only the simplest cases
could be solved before the advent of the digital computer. However, the
analysis of shell structures has expanded in quantity and scope as the capa-
bilities of the computer have grown. A study of the journals indicates that
iaitially the application of the computer to shell analysis was gradual. In
the early 1960's computers were used for some problems, but it was not untii
the middle 1960's that the words "computer solution” appeared in titles and
that the operations involved were tailored for calculations carried cut by
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coaiputers rather than those carried out by hand. The third objJective of this
paper is to review the tremendous expansion of shell analysis and the corre-
sponding growing pains assoclated with computer solutions and to suggest what,
in the author's opinicn, is needed for the immediate future.

FUNDAMELTALS OF SHELL ANALYSIS

Shell structures appear in a great variety of applications inclvding air-
craft fuselages, launch vehicle tanks and intertank stractires, pressure
vessels, rocket motor cases and nozzles, gas turbine engine cases, submersible
vessels, and ground based storage tanks. Detailed shell wall configurations
may take a wide variety of forms including, for example, isotropic, stiff'ened
in one or more directions, laminated, and filamentary composite (see Fig. 1).

A shell is defined as a body having one dimension - the thickness - small
compared with the other two dimensions. The general shape of the shell wall
can be represented by a curved surface in space usually termed the reference
surface (see Fig. 2). Thus the shell geometry may be determined from the shape
of the reference surface, the shell wall thickness, and the shape of the
boundary. The analysis of shells is based on the fundamental laws of solid
continuum mechanics. The assumptions listed below (which are called Kirchhoff
assumptions) are generully admissible because of the thinness of the shell wall:

(a.) Straight lines normal tc the shell reference surface before deforma-
tion remain straight and normal after deformation, and these lines do not change
in length during deformation of the shell.

(b) Stresses normal to the shell reference surface are negligible in
comparison with the other stresses in the shell wall.

Integration through the thickness permits a two-dimensional formulation of
the theory of shells in terms of the coordinates of the reference surface. This
formulation transfers attention from stresses to forces and moments which are
fundamental quantities in shell analysis.

The quantities which the analyst must determine in order to describe ihe
behavior of the shell are shown in Figure 2. These quantities are the moments,
rotations, forces, and displacements associated with the reference surface. In
Figure 2, the sketch on the luwer right shows the so-called membrane forces and
the shears and the sketch on the upper right shows the moments and torques
applied to an element of the shell wall. The equations required to determine
the behavior of the shell include equations which define the equilibrium of
forces (that is, membrane forces and shears, moments and torques) on elements
of the shell wall, equations representing the relations between these forces
and quantities associated with the deformation of the shell wall called strainsg,
relations between these strains and the displacements of the shell referenne
surface, and the proper boundary, continuity and initial conditions. Equilibrium
equations may be obtained directly from considerations of the ferces on an
element or may be derived from a variational principle. The variational
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principles which are commonly used in shell theory include the Principles of
Minimm Potential Energy, Minimum Complementery Energy, and Virtual Work, and
Hamilton's Principle. All of these principles stem from fundamental laws of
solid mechanics. Advantages of these variational principles in the derivation
of the equilibrium equations are that they permit certain freedom in selection
of candidate solution functions and that with their use the correct boundary
conditions to physical problems are generated auiomatically.

One indication of the relative difficulty of solution of shell problems,
perhaps, is represenied by the order of the differential equations involved
in the theory. Many difificult problems in mathematical physics deal with
equations of second order in the space variables. The equations of plate theory
are fourth order. The equations of shell theory, however, are of eighth order.
Anotker consideration which may complicate the solutior of shell problems is
the fact that nonlinearities are often important. Usually, the elastic deforma-
tion of solid bodies leads to small displacements and linear differential
equations, In shell problems, however, the shell wall may displace several
times its thicknese under load, and in this circumstance, even though the
strains may remain small, as is usual in solid bodies, they may depend
nonlinearly on displacements.

TYPES OF SHELL ANALYSIS

Various types of problems must be faced by the shell structure designer
and analyst. In general, the strength of the shell structure is of foremost
importance. Assessment of strength requires analysis of the forces or stresses
in the shell wall under all pertinent loading conditions and comparison of
these values with appropriate allowable values. Shells are often subject to
bending and compression and are, therefore, prone to structural instability
(buckling). Where oscillating load inputs are present, knowledge of the
vibration behavior of a shell structure is of vital importance to prevent
resonances which might damage the structure., If the structure is subject to
very suddenly applied (or dynamic) loadings, the transient response might be
of importance. Finally, interaction between aerodynamic forces and structural
deformations may cause flutter problems, or so-called aeroelastic problems,
which play a significant role in the structural design of aerospace vehicles.
In this section, examples of these various types of shell problems are presented
to characterize them and to indicate the kinds of mathematical problems
involved in thelr analysis.

Stress and Deflection Analysis

The efficient use of space available in launch vehicles sometimes leads
designers to toroidal shell configurations for the purpose of containing high
pressure fluids., Such shells present especially interesting stress analysis
problems. Results of stress and deflection analysis of a toroidal shell under
internal pressure are shown in Figure 3 (from ref. 4). The crown of this shell
(identified in Fig. 3) is a special location, marking the boundary tetween the
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outer region of the shell, where the principal curvatures of the reference
surface are both pogitive, from the inner region where one curvature is
negative, While many pressure vessels are designed on the basis of the

simplest form of shell theory - linear membrane theory - application of this
theory to the torus leads to a discontinuity of displacements at the crown, an
obviously wiacceptable result. The use of bending shell theory, on the other
hand, yields vhysically reasonable results. The comparison is shown at the
right in Figure 5, where the linear membrane result has been taken from
reference 5., On the left in Figure 3 is plotted an outer fiber stress distribu-
tion, that is a direct stress at the shell wall thickness surface, as a function
of the angular coordinate as calculated by both linear membrane theory and
linear berding theory. Note that the simple membrane theory yields stresses
which differ from the bending results by only 20 percent. It should be pointed
out that the geometric parameters of this relatively simple example have been
chosen so that linear bending theory indeed glves accurate results., It is
imvortant to further note that, for thinner toroidal shells, even linear bending
theory is not sufficiently accurate and nonlinearity must be introduced.

Buckling

Because the shell wall thickness is small relative to the other dimensions,
shell structures are susceptible to a mode of failure termed structural
instatility or buckling. Buckling occurs in shell structures in two forms. In
one form a gradusl increase in normal or lateral deflections may occur with
increase in external loading until a maximum load level is reached. In the
other form (bifurcation), there occurs an abrupt change in configuration at a
load level where che initial equilibrium configuration becomes unstable. These
two forms of buckling are illustrated in Figure 4 in which a characteristic
load parameter is plotted as a function of the corresponding displacement
measure. The maximum load type buckling problem is illustrated in Figure k(a);
the analysis required involves increasing the loading in a stress and deflection
calculation until a situation is reached in which additional displacement occurs
accompanied by no increase in load. A nonlinear shell theory is required for
such calculations. The bifurcation type buckling is illustrated in Figure 4(Db);
in this case a stress and deflectlion analysis provides a solution which must be
examined for stability by studying small excursions from it. ‘the origins of
alternate paths (the bifurcation points) occur at the eigenvalues of a system of
homogeneous linear differential equations derived from the general equilibrium
equations, and, of course, the eigenvalues are the buckling loads and they depend on
the prebuckling solution., Inbifurcation buckling problems, the prebuckling solution
may be obtained from either 2 1¢ ear or nonlinear stress and deflection analysis.

Both types of buckling behavior are exhibited by a shallow spherical cap under
uniform lateral pressure. The shallow spherical cap might represent the nose of a
planetary entry vehicle or heat shield of a manned space capsule. Results
for this problem are shown in Figure 5. The buckling pressure is plotted as a
function of a geometric parameter which measures the ratio of the rise of the
shell to its wall thickness. For very shallow shells, maximum-load type buckling
occurs with the deformation pattern symmetric about the axis of the cap. For
values of rise-thickness parameter greater than 5, bifurcation buckling occurs; the
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symmetric prebuckling configuration becomes unstable and an asymmetric buckle
pattern appears. The number of waves in the asymmetric buckle pattern which is
appropriae to each value of the rise-thickness parameter is indicated on the
curves.

Vibration

Shell structures for launch vehicles and spacecraft, for example, may be
subjected to h.gh frequency oscillating loads from rocket engines. To avoid
resonant conditions which might cause structural damage, it is important to
know the natural vibration behavior of such shells. The equations reguired to
determir.e vibration behavior of shell structures are linear and homogeneous
and, in fact, are quite similar to the equations required for bifurcation
buckling calculations. The eigenvalues of the system are now the natural
frequencies of vibration; one key difference between the vibration and the
bifurcation buckling problem lies in the fact that several natural frequencles
are of importance to the designer whereas, generally only the lowest buckling
load is of interest.

Some illustrative results for vibration of a shell structure are shown
in Figure 6 (from r.f. 6) where natural frequencies for a simply supported
cylindrical shell are plotted as a function of ihe number of axial half waves, m.
Each value of m, the numbers of axial half waves, and n, the number of
circunferential waves, determine & natural frequency for the cylinder. For this
simple problem elementary functions catisfy the differential equations and the
boundary cor:’itions and exact results are easy to obtain,

For particular values of the axial wave number parameter, the natural
frequencies tend to cluster together; in this case they cluster near the lowest
frequency. For more complex shells where numerical methods are required, the
closeness of the eigenvalues can lead to numerical difficulties .uch as slow
convergence or failure to determine all frequencies in the range of intecest,
Another consideration which may increase computational difficuliies in shell
vibration problems is also illustrated in Figure 6. Note that the lowest
frequencies do not necessarily correspond to the lowest wave numbers in
contrast to the behavior of simpler structures such as beems and plctes where
the lovwest frequencies almost always are assoclated with the simplest wave
forms,

Transient Response

Shell structures are sometimes subjected to very suddenly applied or
dynamic loads. In such cases the inertia of the shell may be important, and
calculation of the transient response of the structure may be necessary to
determine whether or not stresses or deflections remain within acceptable
limits. 1In transient response probvlems an additional independent variable,
time, is introduced. The shallow spherical shell cap, hinged at the boundary,
under a distributed lateral pressure loading provides an illustrative example
for these problems. Solutions were obtained in reference 7 for a iateral
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pressure with a step variation in time and having a linear variation across the
chord dismeter starting from zero at one point on the boundary. Transient
responce results based on nonlinear shell theory are sho in Figure 7 where
the change in volume under the shell (a measure of the avecage lateral displace-
ment) is plotted as a function of time. The various curves in Figure 7(a)

are for different values of the magnitude of the average step pressure loading.
The maximum volume changes from the response curves in Figure 7(a) are

plotted in Figure 7(b) as a function of the magnitude of the average step
pressure. With increasing magnitude of the pressure, the curve in Figure T(b)
changes abruptly at a value of the average pressure parameter equal to

about 0.2]. The loads at which such behavior is exhibited in shell structures
have been termed "dynamic buckling" loads in a rough analogy to the maximum
load type of static buckling discussed previously. From the computational
standpoint, a significant feature of transient response problems in shells

is that, effectively, a complete static stress and deflection analysis must

be performed at each time increment, and often many time increments must be
taken to establish meaningful results. Computation times for transient
response problems are, therefore, substantially longer than for corresponding
problems in static stress analysis, buckling, or vibrations.

Flutter

Fluld flow along the surface of a shell structure mry cause a
self-induced oscillation termed "flutter." The flutter phenomenon involves
un interaction between the deformations of the shell structure and time-
dependent or unsteady aerodynamic forces, and the resulting physical system
turns out to be nonconservative. Flutter is essentially an instability in
the noncorservative system, and its calculation involves the determination of
complex eigenvalues of complex matrix equations. The usual requirement is to
determine a stability or flutter boundary by finding under what conditions
the real part of a complex eigenvalue changes from negative to positive. 1In
order to accomplish this task, a whole spectrum of complex eigenvalue problems
must be soived on the computer.

The form which one of these solutions takes is illustrated by results for
a circular conical shell in supersonic flow shown in Figure 8. Given in the
figure is an equation for the deflection w of the shell defining its
dependence on the complex eigenvalue A. Real and imagzi:.ary parts of the
elgenvalue are plotted as a function of the velocity,and the flutter velocity
is indicated at the point where Re (A) becomes positive anu, hence, w
increases exponentially with time, At velocities less than the flutter
velocity, oscillations with frequencies associaced with the imaginary part of
A deray, due to aerodynamic damping.

METHODS OF SHELL ANALYSIS

In problems as complicated as those dealing with shells,almost all methods
of analysis will involve numerical calculations. Fcr the purposes of this
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paper, shell analysis methods will be classified either as (1) analytical
nethods if the differential equations are attacked classically and reduced to
algebraic equations which are then solved numerically or (2) numerical methods
wvhere the differential equations are first replaced by their numerical counter-
part and then solved directly.

Anelytical Methods

Analytical methods in shell analysis usually result in closed-form solu-
tions or series solutions. Closed-form solutions are sometimes exact solutions
of the differential equations, but they may also be identified with so-called
boundary-layer techniques. In boundary-layer techniques, the equations are
broken into a set of simple equations for the interior of a shell structure and
a more compllicated set for a zone near the boundary. Such techniques can dbe
tailured to study the behavior of shells for loadings and boundary conditions
ir. whi:h all important deformations occur in a narrow zone near the shell
boundary. Series solutions, on the other hand, are identified usually with
approximation teckni~ues such as the Galerkin or Ritz methods or Fourler expan-
sions of the differential equations. Such methods, if carried far enough, lead
to an accurate solution at any point within a shell contour.

The advantages of analytical methods stem from having available explicit
equations to examine which, in themselves, may give the analyst important
information on shell behavior as design changes are made, The equations may be
manipulated so that limiting cases may be determined precisely in order to check
the solution. Parameters natural to the problem may be identified and they may
be varied conveniently to determine rapidly the ec-ential behavior of the shell
over a wide range of values.

Analytical methods have two distinct disadvantages. First, they require a
knowledge of a varlety of sophisticated soluticn techniques of ordinary or
partial differential eguations. Second, & given form cf analytical solution is
invariably limited to shells of simple geometric shape such as cylindrical,
conical, or spherlcal, and subject to simple loadings.

Numerical Methods

There are three important spproaches in numerical methods of shell
analysis: the firite element method, the finite difference method, and the
forward integration method. In the finite element approach, the structure is
broken up into a finite number of relatively simple physical elements and the
~get of equations for each element is solved approximate.y except for a group of
constants., These constants are determined to satisfy conditions of continuity
and/or equilibrium amcng the elements. Use of a variational procedure
autometically provides a best choice of the finite elument equations governing
a structure within the limits assumed for element mocels, 1In the finite dif-
ference approach, derivatives in the equations are simply replaced by difference
expressions and integrals Uy sums. In the forward integration method, the
problem is corverted into an initial vslue problem and the solution is projected
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forward in space by a technique such as the standard Runge-Kutta method. A
comparison of the characteristics of the forward integration snd the finite 4if-
ference methods along with their advantages and disadvantages is presented in
reference 8 for shells of revolution. All three approaches give solations

approaching the exact solution if enough properly defined elements or enough
difference or integration stations are used.

Kumerical methods have the advantage of very general application; that is,
a formulation may be applied to wide varieties of problems with minor mecdifica-
tions, Practical shell problems invariably have complications such as variable
¢ thickness, wall stiffening, a variety of loading conditions or combinations of
3 loads, a variety of boundary conditions or complicated shapes not easily
specified by equations. Such complications arc almost impossible to handle by

analytical methods, but can be handled in almost routine fashion by numerical
methods.

There are some disadvantages to numerical methods. Obviously, there must
be a computer of adequate capacity available to the analyst. The output of a
computer using nvmerical methods is often a vast array of numbers, and this
situation someZimes obscures trends that might be obvious from an algebraic
formula. Finally, numerical methods are sometimes difficult to check, and

limiting cases may not be as easily obtained as with the use of analytical
) methods.

8 s e e

{ THE IMPACT OF THE COMPUTER

Numerical methods could not be used extensively until computer capability
had been increased to present-dsy levels, Only now are ve able to use general
purpose computer programs that will handle wide classes of shell configurations.
Of course, t..& computer has also expanded our analytical capability. In the

gsections that follow, some of the consequences of the use of the computer will
be examined,

A

A C I

The Effect of the Computer on Solution Techniques

) el

The use of the computer requires all analyses Lo be reduced to a set of
algebraic equations. BSolution techniques as used here are those sequences of
operations required to solve these algebraic equations.

A3 g

Lk

Analytic solution techniques.~ The impact of the digital computer on
analytic techniques has been modest. Primarily, it has allowed more terms to
be taken in series solutions so that solutions with slowly converging series are
1 now feasible, The computer has also permitted accepted standards for the
accuracy of such solutions to improve. The computer does not appear to have
b stimulated the development of new analytic solution techniques.

w‘.‘ﬂ




" W
R £

RAE iy Sl

ke
S

i3S LR SIS A S stk i ST ot

Numerical solution techniques.- By contrast, the availability of high-speed
digital computers has spurred a mumber of advances in mmericel solution
procedutres. For example, for nonlinear problems involving many equations, the
powerful Newton-Raphson solution technique has been deveioped for numerical usec.
Hybrid combinations of Newton-Raphson and other nonlinear solution techniques
have also been developed with great success. Because of their zreat capability
for repetitive applieation of simple operations, and because of their great
speed, computers also admit numerical methods that were too cumbersome previously,
such as the method of forward integration. Similarly, the computer has given
finite difference and finite element methods great significance by admitting
problems of great scope involving large mummbers of simultaneous equations.

Shell Analysis and Design

This section will present a discussion of the recent expansion of shell
studies, the effect of this expansion on the analyst and designer, new communica-
tion problems of the analyst and designer, and, finally, some missing links which
are limiting the potential for computer analysis of shell structures,

Expansion of shell analysis and design capability.- Numerical methods have
led to the general purpose shell camputer program so that almost any problem can
be solved with minimum idealization of the shell's structural detail., For
example, the effects of discrete stiffening attached to one side of a shell can
be included in the anslysis instead of considering the overall, smeu-ed out,
effect of stiffening. This point is illustrated further by the fact that a
"complicated”" problem solved 10 years ago was the nonlinear axisymmetric buckling
of a _herical cap of uniform thickness (refs. 9 and 10), whereas a "complicated"
problem solved just recently is i1llustrated in Figure 9 taken from reference 11.
In the older problem, numerical methods were used with even station spacing,
together with an iteration technique. 1In the newer problem, the axisymmetric
shell structure of Figure 9 was symmetrically and nonsymmetrically loaded and
is a layered orthotropic, longitudinally stiffened shell reinforced by rings
which were treated as discrete structures. A general purpose computer program
was use’ _ which was formulated from the energy with the method of finite dif-
fe_ences. Different station spacing was used in different segments. Maximum
stresses and buckling loads and configurations were determined. This genersl
program can work the 10-year-old problem routinely and with ease. This is a
fairly dramatic extension of analysis capability.

With on-the-shelf general purpose programs available, the designer can
quickly check out a wide variety of design systems or design changes in order
to investigate the impact on weight. In fact, such programs will be an
integral part of direct synthesis programs for minimum weight shells. Develop-
ments of this type have already bzgun. A program for the automated design of
integrally stiffened cylinders under combined loads is already operational and a
program for the automated design of stiffened cones is_essentially complete.
Resuli: from the latter program are shown in Figure 10* where it has been

* —~ -
The suther is indebied to Dr. W. A, Thornton, Clarkson College, for this example.
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app?isd to the design of a minimum weight conical shell subject to a given
external pressure. The shell is clamped at its small end and assumed to have
an essentially inextensible ring at its large -ad, Four design variables, the
shell thickness, and the thickness, diameter, and spacing of tubular rings, have
been determined for minimm weight subject to a number of constraints. These
include sheet minimm gages, skin and ring yielding, panel buckling, ring
buckling, ard general shell instability. Design resuits are sh-m on the lower
left. The margins of safety at the lower right reveal that skin yicelding, gross
buckling,and panel buckling were the important considerationms.

The most difficult aspect of this analysis is the accurate calculation of
general shell instability. In many previous synthesis programs such as for
cylinders, simple analytic expressions were used that could not te extended
with accuracy to more complicated geometries that might result in the least
weight, This progrem mukes use of a general shell of revolution computer
program indicating that extension of synthesis problems to more general shapes
yet retaining necessary accuracy is feasible.

With the present expansion of shell analysis, it is loglcal to assume that
interdisciplinary analysis will increase in importance. Aeroelastic analysis
and coupled hydroelastic or thermoelastic analysis are example: of types of
analysis which will become more prominent. Figure 1l presents a sample of some
results in a coupled hydroelastic analysis (ref. 12). Thesc results were
obtained by the numerical solution of the rather complicated combined hydrody-
namic and shell equations. The pressurc results for axisymmetric impact of
shells on water are compared with the pressure obtained if the shell were a
rigid body. Such an impact loading masy be a critical design corncition and
obviously serious errors (not necessarily conservative) in stress and ouckling
results would occur if thz interaction were not included.

Influence on_the analyst and designer.- One clear jmpact of the computer
has been the growth of perspective of the shell analyst. The day of the
specialist who devotes a lifetime of research to a narrow class of shell problems
and solution techniques is gone. The power to examine a broad spectrum of shell
structures and problems, which the computer has provided, forces the analyst to
a broader outlook and probably brings his outlock and that of the designer closer
together. Of course, the shell synthesis program represents a unity of these two
viewpoints.

But computerized shell analysis can have a powerful hypmotic effect, too.
The lagy analyst is tempted t- reiy too heevily on the machine and to accept
inefficient solution techniques, and there is the danger of total reliance on
mumerical computer results to the neglect of the analyst's intuitive Judgment
of the physical nature of the problem. Another danger for the unwary analyst
is inheren% in the nature of the usual computer output - a blizzard of numbers.
Errors in the solution are thus often difficult to detect. Automated plotting
and other visual displays of results tend to remedy this problem; however, these
devices ai's often neglected in computer program development and there is a need
to impler at methods in new programs for the most effective display of results
so that the physical meaning is understood and errors are easily detected.
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Communication.- Program documents usually contain a writeup of basic theory
and a user's manual including a listing of the program. The process of assimi-
lating this information is usually difficult and laborious. Often, the analyst
would rather set up his own less genersl program than try to fathom an available
program which was devised to do essentially his problem. This duplication and
wasted effort can only be avoided if the program is easy to use with relatively
simple input and the documentation accompanying the program is complete, clesr,

and coneise s0 it offers the user an advantage in investing his time in learning
the new program.

1t is vorthwhile for the developer, as well as the receiver, that the
do.arntation and the computer program itself be frequently updated. For
example, errors may be found in parts of the program that were not used
previously. algorithms in weak parts of the program may be improved. New
limitations of the program may be determined. Moreover, use of a program helps
debug it and improve it; thus, use increases the value of the program. Proprie-
tary programs which lie unused may thus stagnate and become cbsolete. The
author believes that shared programs, with their greater potential for frequent
use, will grow in their solution power and pay bigger dividends to the developer

and, through sharing, the quality of the analysis of shells will rise to the
level of the best engineering talent.

In a similar vein, the value of a computer program to a designer is propor-
tional to its use. The designer will be able to apply intuitive jJudgment for
problems involving geometry and loads within his previous experience, but would
probably have difficulty for problems beyond his previous experience. A wider
scope of experience can be provided it development of esch new computer program
is immediately followed by & limited parameter study leading to published
charts. Each study should explore a new parameter regime made accessible by
the development of the program. This would automatically lead to extension of
the shell designer's knowledge of shell behavior and contribdute to safer, more
efficient designs., Therefore, the author strongly recommends that every new
general purpose program be accompanied ky such parameter studies.

Influence on shell theory and experime it.- The computer analysis of shells
will be no more accurate than the theory on which the analysis is based. There-
fore, a few major weaknesses of theory should be mentioned. A criterion for
establishing relative merits of various versions of linear theory exists
(ref. 3), but a corresponding criterion for establishing the relative merits of
the various versions of nonlinear shell theory has not been derived to the
author's knowledge. With the number of such theories growing and their extreme

complexity undiminished, the analyet needs some convenient basis for a rational
choice.

The buckling load of thin shells is often considerably lowered by the
presence of small imperfections in shape. The present method of studying
imperfection sensitivity is by analysis of the initial postbuckling behavior of
percect shells. This approach has been partl; successful, but needs mich more
development before it is ready for practical application by the analyst in sup-
port of shell design. The capacity for brute force account of known imperfections
in shape by nonlinear, general-shell computer programs is emerging, but is
likely to be very costly for the foreseeable future. Especially difficult will
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be development of methods to eccount (perhaps statistically) for probable
imperfections in shells before their manufascture.

Experimental research has not kept up with our ability to solve theoretical
shell problems of great complexity. For example, the computer has made possible
the analysis of end ring stiffness requirements for shells of revolution. This
is significant advancement in design capability, but there is, as yet, no
experimental verification of these methods. Tuerefore, their application by
the practical designer will be inhibited by his natural reluctance to use
unproven methods. There is an obvioue deficiency here, and the author strongly
recommends that experimental programs be accelerated tc study the limitations
of computerized methods.

CONCLUDING REMARKS

For the benefit of thoune who arc not shell experts, this pap>r has reviewed
the complexity of thin-walled sncll structures, described the basic ideas lead-
ing to shell theories, and surveyed the important kinds of shell b.havior and
shell problems of interest to the designer.

The availability of the elec wonic, digital computer has greatly affected
the capacity of the analyst to deal with shell problems. It has stimlated the
development of numerical solution techniques and greatly increased the anslyst's
solution power. A principal impact 1s the new capacity to obtain solutions for
very general shell configurations incorporating structural detalls that occur
in practical design. The computer has forced the analyst {o learn a new
language to prepare for its effective use and has greatly increased his perspec-
tive, bripging it closer to that of the designer. The great complexity of
computer programe makes them difficult to communicate and their output difficult
to interpret.

The conelderation of these factors has led to a number of recommendations.
Program documentation should be precise, complete, and frequently updated;
programs should be freely shared because of thelr tendency to improve with use
to the beaefit of all. New programs should be applied to parametric analyses
for generation of design charts to help extend the shell designer's knowledge.
Certain missing links in shell theory should be developed, criteria for a
proper choice of nonlinesy shell theories should be established, and methods
for account of imperfeciions in buckling analysis need further development.
Finally, experimental programs must be accelerated to verify computerized shell
analysis methods so that they merit the designer's confidence.
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Figure 9.- Wall construction of complex nozzle structure (ref. 1l1).
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(a) CHOSEN VALUES AND UNSPECIFIED PARAMETERS
MAGNESIUM MARGINS OF SAFETY

t - . 048" SKIN YIELDING . 004+
tR « 010" (Min. Ga.) RING YIELDING .276
d = 1.02" RING BUCKLING 497
s = 1.83" GROSS BUCKLING 027«

WEIGHT = 52.7 Ib PANEL BUCKLING 057+
(b) FINAL DESIGN

Figure 10.- Automated design of a stiffened conical shell.
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QUESTIONS AND COMMENTS FOLLOWING STEIN'S PAPER

QUESTION: Would you care to comment on how we might avoid
the generation of excessive output from the computer? If we don't put

the results on the printed page, where do we put it and in what form?

STEIN: One of the recommendations in my paper was that
plotting techniques should be used. Computer programs should be planned
so that those quantities which are itaportant to the analyst or other program

user can be plotted.

QUESTION: We are all aware of the difficulties encountered in
getting a program which was developed on one piece of hardware to work on
another piece of hardware. If we go cne step further and incorporate plot
routines in the program, do you anticipate greater problems; or should
each user organization have their own plotting routines and then put those

into the program?

STEIN: One of the principal uses for plotting is in the
development stage where it is great for debugging and checkout. When

it comes time to share the program with users having different equipment,
there will, of course, be problems. However, these are by no means

insurmountable.

COMMENT: It has been my experience that it requires considerably
more effort to make a computer program user oriented than it does to

develop the program. A tremendous amount of effort is associated with
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documentation, checkout, parameter studies and _ .eparation of user's
manuals, Historically, funding agencies have not provided the funds
necessary to do much more than develop the code. As a result, many
such codes have never realized their full potential. I think we are going to
have to face up to the fact that it costs money to make new technology

user oriented.

COMMENT: You touched on the reluctance of analysts to accept
for use programs with which they are not familiar. Because it takes so
much time to learn a new program, he may not use the most efficient
program for his problem, or he may derive a special program for his
particular problem. In cases where a number of people a an organization
are occupied with shell analysis, it might be a good idea to have a specialist
on computer programs who learns the new programs as they come out,

and if he thinks they are worthwhile, he can implement them and act as a

consultant to others who may use them.

COMMENT: Two comments: first, I liked your remark on
generating design charts with any new program cf generai nature, bui it's
practically impossible to find anybody who is willing to put up with the

bulk of computer time that is required for such studies. Second, we fiad
that it's possible to eliminate much unnecessary computer printout by
simply not even generating printed output the first shot. Instead, -we look
at the plotted output. It's very much easier to plot stress isobars on any
shape you have, look at them and then select and print out only the areas of

interest for your highest stress and so forth. We do that routinely.
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COMMEINT: First, I want to say that at Ford we are using computer

graphics quite extensively for structural analysis on a production basis.

Basically, the engineer picks out what he wants from a graphical display

and has hard copy plots made. This includes input and output data, checking,

RO T P

and so forth and so on. I also have a question with regard to the automatic

design example you consider in Figure 10. Did you use a special purpose

E—
T A e

algorithm for optimization for this specific problem or was a general

purpose optirization routine used to find the minimum weight?

STEIN: The computer program that was used in this work
. was for an axisymmetric shell. I believe the parameters were chosen

and computer algorithms were then used to find minimum weight.

QUESTION: Were these general purpose algorithms, or were

they for this specific problem? In other words, do you use a general
purpose optimization technique coupled with a general purpose structural

program?

STEIN: The example was based on a problem solved by
Bill Thornton who is at Clarkson University. I believe he used a Fletcher
Powell algorithm or something of that sort. That's all the information I

have on the problem.

COMMENT: I believe that some of the excessive computer output
which has been discussed here today is caused by dumps requested by
the user "just in case.’ In order to minimize this, I can conceive of
employing an auxiliary storage facility connected to the computer on which

a dump would be made automatically in the event of an error. The dump
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could then be requested by the user for a period of up to 24 hours after
the run if he felt it was necessary. After that time the dump would be

scratched without ever having been printed,

COMMENT: I've heard several comments here today to the
effect that more money should be spent to generate design charts and per-
form parameter studies. It seems to me that no matter how many charts
we generate, you never seem to be able to find the particular problem you
have amongst those included in the charts. This is especially true for
multiparameter problems. Thus, you ¢nd up having to generate the
answer to your problem anyway. In my opinion, it's much better to forego
the parametric studies and design charts and develop a well documented
computer code which can be given to others so that they can generate the

answers to their own specific problems.

COMMENT: I think we're missing the boat a little bit on

the parameter study. The principal value iz 1ot the charts that ¢ ..e out;
certainly they're helpful but I think it's the exercise that the code goes
through in generating the charts that is valuable. It helps us find the

bugs and make the code more reliable. So I really don't think the previous

comment is valid.

One further remark and that is that plots are not always the answer. I've
gotten rolls of plots that are just as bad as stacks of cutput. It seems that
invariably the plot I want is in the middle of the roll or at the end. I would
like to see the rolls done away with and have the plots produced in flatfold
form in the same way the output is so that you can thumb through and go to

the middle or the back and not have to roll it all out on your desk,
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COMMENT: We sponsor quite a few parameter studies at

Oakridge National Laboratories and have found the results to be very

useful. People in the pressure vessel field, for example, save a lot of
money using design charts and more could be saved if parameter studies

were available for the analysis of many off-the-shelf items.

COMMENT: I refer again to this question of parameter studies.

I think that one important aspect that really hasn't been brought forward
here is that when you have a general purpose code developed and operational
many people tend to think that ail of the problems in engineering have been
solved and that when a new problem comes up all you do is run to that code
and get the answer. In fact, we have found that even when using our general
purpose codes which are debugged and are reliable, it takes often many
months or as much as a year to solve complex nroblems. Having para-
metric studies performed by the engineers who will use the code gives a
great deal more insight go that the next time around you could use the

code much more efficiently, avoid many of the pitfalls in modeling and
many other pitfalls which lead to poor results. I think that parameter
studies are also very useful when you c. sider trying to solve a new class

of problems. 5o I think these parametric ttudies have a lot of value that

is veally being overlooked here.
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THE NUMERIC:AL METHODS
OF
DISCRETE SHELL ANALYSIS

By

Gilbert A. Greenbaum, Managez, Applied Mechanics
Universal Analytics, Inc.

Anthony P, Cappelli, President
Universal Analycics, Inc.

ABSTRACT

This paper reviews the numerical methods used to analyze shell structures.
For presentation purposes, shell configurations are classified according to
the number of directions in which the shell must be discretized in order to
determine a solution, Omne-, two-, and three-dimensional shell configurations
are then discussed for each numerical method presented., The paper limits
detail discussion to the finite difference, numerical integration, and finite
element methods. Major advantages and disadvantages of each method are given,
and areas which need further study are outlined., The paper concludes with a
discussion of the types of problems solved by all three methods, It is pointed
out that all three methods have been successfully used to solve many shell
problems and each has a definite place in shell analysis.
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1. INTRODUCTION

During the past decade great strides have been made in the design and
analysis of shell structures, These advances have been made possible by
application of discrete numerical analysis methods using high speed digital
computers. By using these numerical methods it is possible to obtain solu-
tions to shell problems involving such complexities as irregular surfaces,
variable thicknesses, anisotropic material properties, and nonlinear behavior,

This paper is being presented at this shell conference to define and
compare the most widely used numerical discrete shell analysis methods., 1In
particular the paper will solely be concerned with the finite difference
(1-7]%* numerical integration [8-12], and finite element displacement methods
[13-43]., It is recognized that other numerical methods (e.g., collocation
[44]) have been successfully used in shell analyses, However, in most cases
these applications have been limjited to spccialized shell problews and for
this reason will not be presented here,

It should be pointed out at the beginning that the paper will not pre-
sent any new technique nor seek to ascertain or establish the "best' numerical
method, However, an attempt will be made to present the fundamental basis
for each method and review the application of each method in solving sheii
problems, Advantages and disadvantages of each method will be pointed out
for specific shell classifications., Although many improvements have been
made in the three numerical methods discussed, there are still areas which
require further refinement, Therefore the paper will also attempt to cite
these areas,

The various shell computer programs which employ the reviewed numerical
methods will not be discussed iu this paper, They will be presented by other
shell conference papers, and a comprehensive assessment of these programs is
given by Hartung [45].

2, SHBELL CLASSIFICATIONS

Prior to discussion of numerical methods, it is convenient for this
presentation to classify various shell configurations. Adopting a procedure
similar to Hartung [45], shell configurations will be classified according
to the number of directions in which the shell must be discretized in order
to obtain a solution,

Baged on this classification, the simplest problems involve thin shells
cf revolution subjected to arisynmetric loading. This problem need only be
discretized in the meridional diraction, since the shell solution does not
vary in the circumferential direction. At the other end of the spectrum is
the three-dimensional (3-D) class, which includes thick shell problems. In

*Numbers in brackets refer to references ot the end of the text.
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general the 3-D class requires that the shell be discretized thLrough the thick-
ness as well as over its surface. A partial list of shell configurations clas-
sified according to the above standard is given below.

One-Dimensional (1-D) Problems

Thin Shells of Revolution - Axisymmetric lLoads

Thin Shells of Revolution - Nonsymmetric Loads (uncoupled Fourier
harmonics)

Thin Shells of Revolution - Nonsymmetric Properties (coupled
Fourier harmonics)

Thin Shells of Revolution - Nonlinear Behkavior {coupled Fourier
harmonics)

Two-Dimensional (2-D) Problems

Thin "Shells of Revolutlon" with cutouts or nonhomogeneous boundaries

Arbitrary Thin Shells

Intersecting Thin Shells

Thick Shells of Revolution - Axisymmetric Loads

Thick Shells of Revolution - Nonsymmetric Loads (uncoupled or
cousrled Fourier harmonics)

Three-Dimensional (3~D) Problems

Thice "Shells of Revolution" with cutouts or nonhomogeneous boundaries
Arbitrary Thick Shells

Generally, the classilication is dictated by the number of independent variables
required to discribe the problem, However, as noted above, advantage can be
taken of shells of revolution configurations to reduce an apparent two-dimensional
problem to a one~diim¢nsional discretization, For example, in treating thin

shells of revolution urder nonsymmetric loading, the loading and shell response
variables can be expanded in a Fourier geries in the circumferential direction
{1-3]. For linear problems this results in a set of uncoupled problems, one

for each Fourier harmonic considered, Each of these uncoupled harmonic prob-

lems is solved using a one-dimensional meridional discretization, and the solu-
tion to the original problem is obtained by superposing harmonic solutions.

For nonlinear problems [6,10] or chells having variable circumferential

stiffness properties [3] , the Fourier decomposition technique results in a set
of equations in which the harmonics are coupled. Although this problem is much
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more complicated than the uncoupled problem, the resulting equations still only
require & one-dimensional discretization. Unlike Hartung [45], the present
authors feel that this type of problem should still be generally classified as
one-dimensional. It should be mentioned that sometimes these types of prob-
lems are better solved using a two-dimensional discretization. An example of
this would be a shell having a discontinucus or highly localized circumferen-
tial stiffness or loading variation. For these cases, if a two-dimensional
digcretization is used, then according to the above standard the problem is
classified as 2-D,

Several one- and two-dimensional problems are shown in Figure 1., One-
dimensicnal configurations for simple, stacked and branched shells of revolu-
tion are illustrated in Figures la, b, and c respectively., Faigures ld, e, and
£ show typical two-dimensional configurations. Shaded regions indicate areas
where a three-dimensional analysis may be required,

3. PINITE DIFFERENCE METHOD

‘The finite difference method 18 a widely used “echnique for the numerical
solution of the shell differential equations. The fundamental basis of the
method is the approximate evaluation of continuous derivatives using discrete
point formulas. The method can be applied directly to the governing differ-
ential shell field equations (e.g., [1-6]) or to the potential energy expression
[7]. 1In the letter case the final algebraic equations arz obtained by mini-
mizing the potential energy.

The opecific finite difference expressions used are dependent on the form
of the differential equations. As an example, let us consider the eight-order
system of field equations (e.g., see [46]) frequently used in the linear analy-
8is cf shells., This system can be reprcscated in the form of two partial dif-
ferential equations, each of fourth order, or four second order differentisl
equations, etc. A fourth order formulation would, of course, require finite
difference formula for approximating fourth derivatives, and similarly for
other derivatives.

To illustrate the application of the finite difference method, let us
consider the eight-order shell of revolution system represented, after Fourier
harmonic expansion, by four second order ordinary differential equatione [1].
The matrix form of this set of field equations is given by

[A(x)]{:—}' + [B(x)]{%;g]+[c<x>] s} = few) 69

wvhere A, B and C are (4, 4) matrices representing the shell stiffness and
geometry properties, The dependent variable y is a (4, 1) vector considered
in [1] as three displacements and the meridional bending moment,
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Figure 1. Typical Shell Configurations
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In its simplest form the application of the finite difference method is
initiated by dividing the shell into equally spaced intervals as shown in
Figure 2. for a one-dimensional shell of revolution.
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Figure 2. Finite Difference Mesh

The central difference expressions for approximating derivatives in Eq. (1)
are given by

by _ oviel Wity

dx2 a2
, (i = 2, 3' l{, co 0 N-l) (‘Z)
dy Yi#l = Vi
4 dx 2A

where 1 refers tc a particular station or control point associated with the
firite difference interval A . The above exprecsions were obtained by curve

¢ fitting a parabola through three successive points. The error associated with
E: the above expressions is order (A2). Thus the smaller the increment (A + 0),
k: the better the approximation of the derivative, Formulas uaing higher order

i curves to approximate derivative expressions are available and will give smaller

errors of order (A") . However, as would be expected, additional control points
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are requixed for these representations, and thus they increase the bandwidth
of the algebraic equations. The bandwidth is defined as the maximum number
of terms to the left and right of the main diagonal. Since the time for
solving the set of algebraic equations is proportional toc the bandwidth
squared, higher order formulas are usually avoided.

Continuing with the example, Eqs. (2) are only valid at interior points
in th= shsll discretization. At boundaries, forward or backward differences
or expressions requiring the addition of a fictitious point [2] may be used.
For exanple, in [1] the following forward and backward difference of error
order {4} was used

Yo = ¥
%ﬁ - 2 % 1 at i =1
3)
b/ y

Application of the finite difference formulas (2) and (3) to the shell
differential equations (1) results in a set of algebraic equations which can
be expressed in matrix form

[lbd - ol
where K {8 a {MN, MN ' matrix, M being the number of dependent variables at
each control point aad N the number of control points, For thi. example K is
a (4N, 4N) matrix. S'nce, in general, K is a highly banded matrix, it may be
very efficiently solved on a digital computer., In reference {1] a special
Gaussian elimination method (Potter's Method) was used to solve Egs. (4).
The procedure involved only the inversion of (4, 4) matrices.

In general, application of finite differences to any consistent form of
l1iaear shell equations will result in a matrix equation of the form given by
Eq. (4). Although the example given was for a one-dimensional discretizationm,
the method i{s equally applicable to two~ and three-dimensional shell problems.
The finite difference method can also be conveniently used to solve nonlinear
problems, 1In this case the resulting algebraic equations are nonlinear and
are solved by an iteration or step-by-step technique,

Application of the Finite Difference Method to Shell Configurations

The finite difference method has been apriied to one-, two-, and three-
dimensional shell configuration problems. The convenience of application and
accuracy depends on the specific problem and type of shell configuration
considered,

ko
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Although variable interval finite difference formulas are available, the
method is most conveniertly applied to 4 uniform mesh, One of the difficulties
encountered in the application of the finite diffexence method is the aelection
- a priori of a mesh size to obtain economical solutions within accuracy require-

ments. This is particularly tiae at boundaries or in regions where rapid changes
of loading or stiffness properties occurs. Finer mesh or higher order dif-
ference expressions are desirable in these areas, Por example, it was found
for one-dimensional shell of revolution problems [2] that use of the three
point forward and backward expression (error ( 4“)) in place of the two point
expression in Reference [1] greatly increased the solution accuracy in the

boundary region. The use of fictitious points and central differences also
increased accuracy [2].

Theorstically, finite difference cannot be used at locations where deri-
vatives are discontinuous. However, for shells of revolution this problem can
be e.iminated by application of transition or compatibility and equilibrium
expressions at discontinuities as suggested in Reference [1]. The shell con-
figuration may be divided into muitiple regions or segments to handle discon-
tinuous configurations with each region tied together by appropriate transition
! equations, This procedure may also be used to allow changes in mesh size be-

] tween regions, Care must be taken that the mesh size is not too different be-
tween regions, since numerical round-off errors could occur when using a
digital computer.

There are various other permutations of the basic finite difference ap-
proach that improve accuracy. Perhaps the best formulation to use with the
finite dif’erence method is a formulation which minimizes the highest order
derivative, In References [5, 6] a six-order and eight-order set of six and
eight first order equations, respectively, were solved. The dependent vari-
ables were stress resultants, displacements, and rotations. In both of these
formulations the interior differences were cf order (A2 ) and it was not neces-
sary to use derivatives at boundaries. Furthermore, a higher order derivative
formulation such as given in [1] requires that finite differences be used in
the calculation of stress resultants., This can result in added inaccuracies
vhich the first order system formulation does not have.
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The spplication of the finite difference method has characteristically
been restricted to orthogonal coordinate systems (mesh). Therefore, diffi-
culties occur in treating complex shell structures (arbitrary stiffened shell)
or shells with irregular boundaries or cutouts, Boundary conditions at
irregularities are especially awkward to treat. A part of this complexity
is rewoved when using the finite differance method in conjunction with mini-
mization of the pctential energy [7].

In summary, the finite difference method yields excellent results in
treating one-dimensional problems. For two- or three-dimensional problems
finfte difference is very useful for treating problems only requiring an or-
thogonal mesh of equal spaced intervals, It becomes difficult to apply to
general complex shell configurations with irregular boundaries,
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4, NUMERICAL INTEGRATION METHOD

The numerical integration method is applicable to solving any system of
' m first order ordincry differential equations which can be written in the form

l‘-‘%g&} = [am] [y] + [peo) a<x<b )

where y(x) is an (m, 1) column vector which contains the m unknown dependent

;i variables; A(x,y) is an (m, m) matrix which for nonlinear problems contains
gy functions of the dependent variable y; B(x) is an (m, 1) column vector which
> contains the nonhomogeneous load terms; and x is the independent variable.

5 The boundary conditions for Eqs. (5) may be stated in the form

[a]freo] + [} freo} = [e] (6)

where Fa and Fp are (m, m) matrices and G is an (m, 1) column vector, which
. prescribes the boundary conditions at x = a and x = b.

d The numerical integration method of solving Eqs. (5) and (6) for linear

: problems is straightforward and is described below, The solution of nonlinear
or eigenvalue problems is similar, but also requires an iteration technique to
arrive at the correct solution [8-11], For linear problems A(x,y) = A(x)

k and the complete solution of Eqs. (5) may be written in the form

oo = [r][se] + |zco] )

vhere Y(x) is an (m, m) matrix whose columns sre m independent solutions to the
: homogeneous part of Bqs. (5). [Y(x)] may be obtained by using a numerical for-
2 ward integration method subject to the initial conditions that [Y(a)] equals
the identity matrix, The {m, 1) column vector Z(x) is the particular solution
of Egqs. (5) and may alao be obtained by forward integration subject to the
by initial condition that Z(a) equala zero, It should be =noted that when carry-
L2 ing out the forward integration use could be mude of a predictor-corrector
2 integration technique which asutomatically selects the step size [8].

By evaluating Eq. (7) at x = b, the dependent variable y(b) may dbe
related to y(a) by the eguation

o] = [rw]ly@) + [z (8

L2
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Thus one may see that Eqs. (8), together with the boundary conditions (6)
constitute a system of 2m equations from which the 2m unknowns y(a) and y(b)
are determined, Once y(a) is knowm, the solution y(x) at any value of x is
obtained from Eq. (7), provided that the homogeneosus and particular solution,
Y(x) and Z(x) respectively, have been retained,

Application of the Numerical Integration Method to Shell Configurations

The application of numeiical integration to chell protlems is limited to
solving problems which only require a one-dimensional diecretization, nor-
mally in the meridional direction, Furthermore, while the method described
above is theoretically correct and sound in principle, in practice it cammot
be used to solve shell problems whose meridional length L is greater than
approximately

L > (3/A) (9)

where A is of the order of magnitude

) = o(;ﬁ) (10)

where R is the minimum radii of curvature of the shell and h is the shells
thickness [8]. Ths reason for this limitation is_that the homogeneous solution
for the shell eguations has a term of the form e"X , Hence in solving Eqs.
(7) for Y(b), very large magnitudes are obtained when L > 3A , ‘Then in
attempting to determine y(a) and y(b) by sclving Eqs. (6) and (8), it is fonnd
that a complete loss of accuracy results because of the subtraction of large
numbers of almest equual magnitude, Therefore, some other procedure must be
used to solve shell problems of arbitrary meridional length,

The method uased to solve shell of revolution problems of any arbitrary
meridional length is called the multi-segment method, [8-11]. 1In using this
method the shell is divided into M contiguous segments denoted by Si, where
i=1, 2,,,.M, Each segment is chosen so that its length is smaller than
( 3/X ). Consider the shell segments shown in Figure 3, For descriptive
reasons the left edge of each shell is numbered starting at 1 for segment 1

) and ending with M+l at the right edge of segment M.

S4

x S3 - -
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Figure 3. Shell Segments
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The governing shell equations are reduced to a system of eight ordinary
first order differential equations in terms of eight dependent variables (con-
sisting of stress resultants, displacement, and rotations) and the independent
variable x, the meridional coordinate, In analogy to Eqs. (7), the solution
to the governing equations within any segment is given by

'y(x)li = [Y(x)li ‘Y(xi)li + 'Z(x)l1 ({t =1, 2,...M) (11)

where the subscript i on the matrices denotes that they correspond to segment
i. The solution at the end of each segment is therefore

g, = [ro) pow)y + [zl @ =1 z.0m (12)

To complete the governing shell equations, the boundary conditions at x; and
*vq1 DAY be written as

[Fal "'("1)‘ *[Fbi iY(":m)] - |Gl (13)

and the continuity equations which hold for contiguous segments are given by

[ral, pressnly + [y pewsnlyy = ] @ -nzmn a0

where Tq and Tp are (m, m) matrices which relate the dependent variables at
the right edge of {1, {y(xi + 1)}1 , to the dependent variables at the left
edge of segment i+l, {y(x{ + 1)}54; . Eqs. (12), (13), and (14) form a com-
plete system of equations from which the 2mM unknown variables at the edge of
each segment may be determined., Once these variables are found, the solution
at any value of x is obtained by Eq. (11).

As mentioned previously, numerical integration is limited to solving
problems which only require one-dimensional discretization. Thus the method
requires that the shell equations which repregent the shell configuration be
reducible to a system of ordinary differential equations with one independent
variable., Hence in applying this method to the shell of revolution subject

Ly
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to asymmetric loads, the governing partial differential equations must first
be reduced to a system of ordinary differential equations with one independent
variable, As described earlier, this is done by expanding all the dependent
variables in a Fourier series in the circumferential direction. The re-
sulting ordinary differential may then be solved by the numerical integration
method,

Problems which cannot be reduced to a system of ordinary differential
equations may sometimes be solved by combining the numerical integration and
finite difference methods, For example, Kalnins [12] has solved the problem
of a curved thin walled shell of revolution by using a finite difference rep-
resentation in the circumferential direction and numerical integration in the
meridional direction, Other mixed methods of this type are also possible,

5. FINITE ELEMENT METHOD

The representation of a continuum by an assemblage of a finite number of
structurul elements, each of which may be characterized by independent deforma-
tion modes, is called the "finite element" method [13, 14]. The major dis-
tinction between the finite element method and the finite difference method
is that the finite difference method discretizes the differential equations
which describe the structure's behavior, while the finite element method dis-
cretizes the structure, and then constructs the governing equations for the
discretized model of the structure.

e - - AT P o P W (B, S ————— ke 8 s =

There are two forms of the finite element method called 1) the "force"
methad and 2) the "displacement" or "stiffness" method [13-15]. The force
method treats the internal forces or stresses as the basic unknown variables
and is usually asgsociated with the Principle of Minimum Complimentary Energy.
The displacement or stiffness method considers the displacements as the basic
unknowns and 18 usually associated with the Principle of Minimum Potential
Energy. Of the two methods, the displacement method is usually preferred be-
cause its formulation and computation automation is relatively simple, and
yet it is still general. Since most finite element shell cnalyses use the
displacement method, the remainder of this section will only discuss this
method,

The application of the finite element displacement method is best de-
; scribed by the following steps:

1. 1Idealize the structure., Choose the types of elements which will repre-
sent the structure and construct a discretized finite element model of
the structure.

2, Calculate the stiffness matrix for each of the elements which make up
the structure.

L5
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3. Assemble the element stiffness matrices to form the structuril stiffness
matrix for the entire structure., These equations are the equilibrium
equations applied at each nodal point of the structure.

4, Obtain the unknown displacements at each nodal point of the structure by
solving the equilibrium equations subject to the imposed boundary re-
straints.

5. Determine the internal strains, stresses, and forces in the structure,

All of the above steps are standard for solving problems using the displace-
ment F.E, method, The only differences which may exist between formulations
is the method by which the element stiffness matrix is obtained (Step 2).

' Two basic techniques have been used to derive element stiffness matrices
[15, 16]. They are 1) the “"equivalent force" and 2) the "ene: v" methods.

The equivalent force method is based on assuning stress functions tc
‘ represent the behavior of the element. The element strains and displacement
' modes are obtained by integrating the stresses. In addition, "equivalent"
forces are calculated by integrating the stresses along the element boundary,
‘ and lumping the forces at the nodes, Finally, by evaluating the displacementse
at the nodal points and comparing these relations with the equivalent force
relations, the element stiffness matrix is obtained,

The energy method has been the predominate method used to derive element
stiffness matrices, since it is based on variational principles that provide
a sound theoretical basis for the finite element method [17-19]. Although
numerous variational principles have been used to derive element stiffness
relation [20-22], the displacement method is normally associated with the
Theorem of Minimum Potential Energy. A general formulation of the displace-
ment method based on the Theorem of Minimum Potential Energy was presented
by Melosh [17]. A discussion of the criteria for insuring the monotomic
convergence of the F,E. energy method solution is given in References [17-19].

—n e ©

It was pointed out by these investigators that the convergence of the
finite element solution to the exact solution as the shell element sizes ure
decreased is dependent on a number of conditions. The two primary conditions
for convergence are that the deformation of each element maintain compati-
bility along interelement boundaries, and be capable of representing a state
of constant inplane strain and bending curvature, In addition, although uot
necessary from a convergence viewpoint, the deformation of each element should
inciude a complete set of rigid body modes which yield zero strains for the
shell theory used,

It should be noted that many finite element stiffness matxices have been
derived which do not satisfy the above conditions but still yield good solu-~
tions [23, 24, 43). Nevertheless, finite element stiffness matrices which
satisfy the above conditicns are the objective of most finite element investi-
gators,
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The general method for determining the element stiffness matrix by appli~
cation of the Principle of Minimum Potential Energy is given below. In applying
the finite element method, the body is first divided into & large number of
discrete elements as shown in Figure 4,

4th element

Figure 4. - te Element Model

The strain energy of the element, Uy, and work done by surface or boundary
tractions acting on the element, W3 may be written as

v = %y (Plel) (o] (ol fef) o s

Wy o= fs MTMds (16)

vhere [E] 1is a function of the material properties, the matrix ([D] 4s a
differentiel operator, and the vector {u} is the displacement or rotation
of any point within or on the boundary of the element. The defoxmations
{u} of the element are now assumed to be representable by a series of

functions 9 whose coefficients are the displacements or rotations, §, at
the "nodal points' of the element, i.e.

] = [ol o
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The functions ¢ are chosen to satisfy the convergence criteria conditions
discussed earlier.

The Principle of Minimum Potential Energy states that of all displace-
ment functions which satisfy the displacement boundary conditions, the one
which satisfies equilibrium makes the potential energy an absolute minimum.
This principle may be written as

8 [2} w; - wj)] = 0 (18)

Substitution of Eqs. (15), (16), and (17) into (18) then yields the
final equilibrium equation for the body

| Kbl -1l = ) o [elle] - I

where the summation means that Egs.(19) must be summed for all elements of

the body subject to continuity constraints. The matrix [k] is the element
stiffness matrix and the force vector {F} 1is the generalized external forces
acting on each element,

[ = & (el el (s} [e])

(20)

lFl = fSMT M as

It should be noted that Eq. (19) is of similar form as Eq. (4) of tbe
finite difference methud. It is conceivable that for specific pribleme, ap-
plication of the finite element and finite difference methods can result in
an identical set of algebraic equaticvas,

As in the finite difference method, the final matrix K is very sparse
and by judicious choice of a nodal point numbering scheme can be put in a
highly banded format. Automatic matrix re-ordering schemes have been em-
ployed in the finite element method to minimize the matrix bandwidth,

Application of the Finite Element Method to Shell Configurations

The major advantage of the finite element method is its complete gener-
ality and ease of application to complex problems, The finite element method
has been used to analyze all types of shell configurations. These analyses

48




R e e

make use of four basic element types (Figure 5): 1) conical and meridionally
curved axisymmetric shell elements [25-30]; 2) triangular or quadrilateral
flat and curved elements [21-23, 31-37]; 3) axisymmetric solid of revoluticn
elemeats [38-40]; and 4) three-dimensional solid elements [41]., In additionm,
stiffened shell structures use straight and curved beam elements to represent
stringers and frames.

The first type of element used to analyze axisymmetric shells of revo-
lution were the conical elements [25-29]., As in the finite difference and
numerical integration methods, the Fourier series expansion technique was
used to treat nonsymmetric loads, However, as pointed out by Jones and Strome
[42], the -use of con’cal shell elements to represent curved shells sometimes
gave inaccurate results. These inaccuracies were predominate in problems
where distributed loads induced large membrane stress rescltants, Development
of meridionally curved shell element [28-30] permitted a more accurate ideali-
zation which yielded improved accuracy,

Similarly, the first elements used to represent general curved shell
structures were flat triangle elements [31]. The flat element stiffness ma-
trix was improved by many investigatore [21-23, 32]; however, it still has
the same inadequacies as those encountered with the conical element, and may
not always give accurate results for curved shell structures [33-37]. To
overcome this deficiency, many investigators have heen working on developing
an adequate curved shell element [33-37] which satisfies the proper conver-
gence and rigid body conditions, This work has included using more degrees
of freedom per node to represent the shell deformation as well as using more
nodes to represent an element. In both cases the complexity of the element
stiffness matrix is increased as well 2s the computer compatational time.
Even so, there does not appear to be any =2neral curved triangular or quadri-
iateral element which completely satisfies all convergence and rigid body
conditions,

Two- and three-dimensional solids are treated using either the axisym-
metric triangular ring element or the general solid element (e.g., a tetra-
hedron) [38-41]1, The first axisymmetric elcment used a linear displacement
field to represent its behavior, It was found, however, that for some prob-
lems, the stresses in contiguous elements would bz greatly different if the
mesh was not exceptionally fine, This problem was reduced by combining tri-
angular elements to form a quadrilateral element, and then calculating
stresses for the quadrilateral element or by averaging stresses of elements
attached to the same node, Improvements in the solution were also obtained
by ueing a quadratic displacement to represent the elemeat, and adding nodes
to the sides of the elements [41].

Other techniques to improve the accuracy of solution have been studied
and include mixed hybrid formulations [21] and mixed displacement and force
methods {15],

k9
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(a) Axisymmetric Thin Shell
Element

(c) Axisymmetric Thick Shell
Element

(b) Triangular Flat and Curved
Shell Elements

(d) Three-Dimensional Solid
Element

Figure 5. Shell Finite Elements
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6. PROBLEMS SOLVED USING THE THREZ NUMERICAL METHODS

Hartung [45] recently completed an extensive survey and assessment of
current capability for computer analysis of shell structures, This assessment
includes descriptions of major types of problems solved to date by the finite
difference, numerical integration and finite element methods. Table 1 is based
on this inforwmation, and shows the types of problems which have been solved by
the three numerical methods.

The table shows that one-dimensional discretization problems have been
extensively studied using all three numerical methods, The finite difference
and finite element methods are more extensively used than numerical integration.
The finite element method has not been applied as yet to buckling imperfection
sensitivity studies,

Two- and three-dimensional applications have not been as extensive as |
one-dimensional applications. Furthermore, many of the problems studied in
this classificatjon were done for special geometries and zre not generally
available for solving arbitrary shell problems,

7. SUMMARY AND CONCLUSIONS

This review has presented the major features and limitations of the finite
difference, numerical integration, and finite element methcds. Each discrete
method was shown to be based on well founded principles, which guarantees that
the solution error approaches zero as the mesh or step size is decreased, The
finite difference and numerical integration methods have one source of error
{not including computational round-off error inherent in all computerized
methods)., This error is due to discretizing the governing dififerential equa-
tions, and approaches zero as the mesh or step size is decreased, The finite
element method has two sources of error: 1) geometric idealization errors,
and 2) structural idealization errors, The first gource is due to representing
the actual shell geometry with an approximate finite element idealization. The
second source is due to representing the deformation behavior of each element
with only a finite number of degrees of freedom. The error due to geometric
idealization does, of course, vanish when the actual geometry is used. However,
when curved shell surfaces are represented with flat plate elements, the error
may not vanish [42, 43], Errors due to structural idealization can be proved
to vanish in the 1limit, provided that the deforma-ion modes of the element
satisfy the proper convergence criteria.

All three numerical methods have been extensively used to solve one-
dimensional prvoblems, and if used with the refinements mentioned, gave very
good ‘esults. In addition, for one-dimensional problems, all three methouy
are about equal in ease of application,

51




AR R R e e A I R S 2 e L R I R I

APPLICATION OF FINITE DIFFERENCE, NUMERICAL INTEGRATION,
AND FINITE ELEMENT METHOD COMPUTER PROGRAMS TG SHELL PROBLEMS

One-Dimensional Two- and Three-Dimensional
Problem Type F.D. | N.I. | F.F. F.D., | N.I.* F.E,
Static Analysis
Linear Elastic X X X X X X
Geometric Nonlinearity X X X X X
Material Nonlinearity X X X X
Buckling Analysis
Linear Elastic X X X X X
Geometric Nonlinearity X X X X X
Material Nonlincaricty X X
Imperfection Sensitivity] X X
Dynamic Anglysis
Linear Elastic
Free Vibration X X X X X
Direct Integration X X X X
Geometric Nonlinearity X X X X
Material Nonlinearity X [, X X X

*To solve two- or three-dimensional probiems, numerical integration must
be combined with another method.

Table
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Two-dimensional discretization problems can only be solved by the finite
difference or finite element methods, HNumerical integration is not applicable
for this classification unless it is combined with another discrete method,
The finite clement method is the easiest method to apply to two- and three-
dimensional arbitrary shell structures. It can easily handle surface irregu-
larities, variable material properties, and different types of structural
elements., Application of the finite difference method to two- and three-
dimension.' problems has been limited, so far, to using orthogonal meshes
which are usually equally spaced,

Further work in the three reviewed numerical methods should include the
following:

1. Investigation of advantageous methods of combining numerical integration
with other discrete numerical methods

2, Development of techniques for treating arbitrary nonorthogonal finite
difference meshes

3. Development of an arbitrary curved triangular finite element which meets
all convergence and rigid body criteria

If & conclusion can be made from this review, it would be that each of

the discrete numerical methods presented exhibits some unique features that
make it a valuable shcll analysis method.

>3




TN, “paflngep gV el

e RS R T SO0 T v e s ok e L R R AR A LT A O RN R RS T e TR SRR L S TR

Y i ] P~

e Ave———— v ra.

REFERENCEf

1. Budiansky, B. and Radkowski, P.P., '"Numerical Analysis of Unsymmetrical
Bending of Shells of Revolution," AIAA J,, Vol. 1, p. 1833, 1963,

2, Cappelli, A,P,, '"Study of Apollo Water Impact,” Vol., 7, Modification
of Shell of Revolution Analysis, North American Aviation, Inc. Report
SID 67-498, (Contract NAS9-4552, G,0. 5264) May 1967.

3. Cappelli, A.P., Nishimoto, T.S., and Radkowski, P.P,, "Analysis of
Shells of Revolution Having Arbitrary Stiffness Distributions," AIAA J.,
Vol. 7, No. 10, p. 1909, October 1969,

4, Famili, J, and Archer, R., '"Finite Asymmetric Defc~mation of Shallow
Spherical Shells," AIAA J,, Vol. 3, p. 506, 1965,

5. Stephens, W.B. and Fulton, R.E., "Axisymmetric Static and Dynamic
Buckling of Spherical Caps Due to Centrally Distributed Pressures," AIAA
7th Aerospace Sciences Meeting, N.Y., January 1969,

6. Greenbaum, G.A. and Conroy, D.C., "Post-Wrinkling Behavior of a Conical
Shell of Revolution Subjected to Bending Loads,”" AIAA J,, Vol, 8, No. &4,
1970.

7. Brogran, F. and Almoth, B.O., "Buckling of Cylinders with Cutouts,"
AIAA J,, Vol, 8, No, 2, p. 236, February 19790,

8. Kalnins, A,, "Analysis of Shells of Revolution Subjected to Symmetrical
and Nonsymmetrical Loads," J. of Applied Mechanics, ASME Series E,
Vol., 31, p. 467, 1964,

9. Cohen, G.A.,, "Computer Analysis of Asymmetric Deformation of Orthotropic
Shells of Revolution," AIAA J,, Vol, 2, No. 5, p. 932, May 1964.

10, Mason, P., Rung, R., Rosenbaum, and Ebrus, R., 'Non-Linear Numerical
Analysis of Axisymmetrically Loaded Arbitrary Shells of Revolution,! AIAA
J., Vol. 3, Nu. 7, p. 1307, July 1965,

11, Svaldbonas, V., and Angrisano, N., '"Numerical Analrsis of Shells - Volume
1 - Unsymmetric Analysis of Ortnotropic Reinforced Shells of Revolution,™
NASA CR-61299, September 1366.

12, Kalnins, A., '"Analysis of Curved Thin-Walled Shells of Revolution," AIAA
J., Vol, &, No. 4, p. 584, April 1968,

13, Turner, M.J., Clough, R.J., Martin, H.C,, and Topp, L.J., "Stiffness
and Deflection Analysis of Complex Structures," J. Aeronaut. Sci.,
Vol. 23, No. 9, p. 805, 1956,

54




Pl
¥ 3

PR R o

ST e

SR LS

v

(T

TG

7

itk O b LU

AT

AR Ao

g

R g

1)

ey
P

PP

T

ARE

T ““7,:,—:'*' R

14,

15.

16,

17.

18,

19.

20,

21.

22,

23.

24,

25.

26.

27‘

1L AT P AR T SRR N TN AT NI T T Lo SRR T 2 3
: ¥ i R AT R e el e & o oo 1S Do o . I
. YL WL S T IR ST g age Tl I QTN S S e 458 LEIFEFTH LB LI wF N P od- v ',QA,:“"M’V:&%

e N L STy e hatd
i .

Argyris, J.H., Energy Theorems and Structural Analysis, Butterworth's
Scientific Publications, London, 1960,

Gallagher, R,H., A Correlation Study of Methods of Matrix Structural
Analysis, Macmillan Co., New York, 1964,

Gallagher, R.,H., 'Techniques for the Derivation of Element Stiffness
Matrices," AIAA J,, p. 1431, June 1963.

Melosh, R.J., '"Bases for Derivation of Matrices for the Direct Stiffness
Method," AJAA J,, p. 1631, July 1963,

Pian, T.H.H., and Tong, P., 'Basis of Finite Element Methods for Solid
Continua," International Journal for Numerical Methods in Engineering,

Vol. 1, p. 3, 1969,

Tong, P. and Pian, T,H,H., "The Convergence of Finite Element Method
in Solving Linear Elastic Problems," 1Intl. J. Solids and Structures,
Vol, 3, p. 865, 1967,

Greene, B.E., Jones, R.E., McLay, R.W., and Strome, D.R,, “On the
Application of Generalized Variational Principles in the Finite Element
Method," AIAA/ASME 9th Structures, Structural Dynamics and Materials
Conference, Palm Springs, California, April 1-3, 1968,

Pian, T.H.H., "Element Stiffness Matrices for Boundary Compatibility and
for Prescribed Boundary Stresses,'" Conf. on Matrix Methods in Structural

Mechanics, October 19635,

Fraejis de Veubeke, B., Upper and Lower Bounds in Matrix Structura.
Analysis, AGARD ograph 72, Pergamon Press, Oxford, 1964.

Clough, R.W. and Toucher, J.L., "Finite Element Stiffness Matrices for
Analysis of Plate Bending," Conf. on Matrix Methods in Structural Mech.,
Wright-Patterson AFB, Dayton, Ohio, October 1965,

Bazeley, G.P., et al., "Triaugular Elements in Plate Bending - Conforming
and Non-Conforming Solutions,' Conf. on Matrix Methods in Structural
Mechanics, Wright-Patterson AFB, Dayton, Ohio, October 1965,

Grafton, P,E, and Strome, D.,R., "Anslysis of Axisymmetric Shells by
the Direct Stiffness Method," AIAA J., Vol. 1, No. 10, p. 2342,
October 1963,

Popov, E.P., Penzien, J., and Lu, Z,A., "Finite Element Snlution for
Axisymmetric Shells," J. of Engr, Mech, Div., ASCE, p. 119, October

1969,

Percy, J.H., Pian, T,H.H., Navaratna, and Klein, S.,, "Application of
the Matrix Displacement Method to the Linear Elastic Analysis of Shells of
Revolution," AIAA J., Vol. 3, No, 11, p. 2138, November 1965.

55




n

SR % aqston SARLY

2984

28,

29,

30.

31,

32.

33,

34,

35.

36.

37.

38,

39.

40,

e

Jones, R.E. and Strome, D.R., "Direct Stiffness Method Analysis of Shells
of Revolution Utilizing Curved Elements," AIAA J., Vol, 4, No, 9,
p, 1519, September 1966.

Strickland, Navaratna, D,R,, and Pian, T.H.H.,, "Improvements on the
Analysis of Shells of Revolution by the Matrix Displacement Method,"
AIAA J,, Vol, 4, No. 11, p. 2059, November 1966,

Witmer, E.A., Pian, T.H.H., Mack, E.w., and Berg, B.,A., "An Improved
Discrete Element Analysis and Program for the Linear Elastic Analysis of
Meridionally-Curved, Va-iable-Thickness, Branched Thin Shells of Revolution
Subjected to General External Mechanical and Thermal Loads., Part 1 -
Analysis and Evaluation," SAMSO TR 68-310, Part 1 (also MIT ASRL TR 146-4%,
Part 1), March 1966,

Wiekel, R.C., Greene, B., and Strome, D.R., "Application of the Stiffness
Method to the Analysis of Shell Structures," ASME Paper 61-AV-58, March
1961,

Clough, R.W. and Felippa, C.A., "A Refined Quadrilateral Element for
Analysis of Plate Bending," Second Conf. on Matrix Methods in Structural
Mechani.s, October 1968,

Key, S.W. and Bersengu, Z,E,, "The Analysis of Thin Shells with Transverse
Shear Strains by the Finite Element Method," Second Conf. on Matrix Methods
in Structwral Mechanics, Wright-Patterson AFB, Dayton, Ohio, October 1968.

Cantin, G. and Clough, R.W., "A Qurved Cylindrical Shell Finite Element,"
AIAA J,, Vol, 6, No. 6, June 1968,

Atluri, S., '"Static Analysis of Shells of Revolution Using Doubly Curved
Quadrilateral Elements Derived from Alternate Variational Models," SAMSO
TR 69-3¢4, June 1969,

Bogner, F.F., Fox, R.L., and Schmidt, L.A., "A Cylindrical Shell
Discrete Element," AIAA J,, Vol. 5, No. &4, April 1967.

Olson, M.D. and Lindberg, G.M., "Vibrational Analysis of Cantilever
Curved Plates Using a New Cylindrical Shell Finite Element," Second Conf.
on Matrix Methods in Structural Mechanics, Wright-Patterson AFB, Dayton,
Ohio, October 1968.

Clough, R.W. and Rashid, Y., "Finite Element Analysis of Axi-Symmetric
Solids," J. of Eng. Mech. Div,, ASCE, Vol. 91, p. 71, February 1965.

Wilson, E,L., "Structural Analysis of Axisymmetric Solids," AIAA J.,
Vol, 3, No. 12, p. 2269, October 1965,

Hofmeister, L.D. and Greenbaum, G.A., "Large Strain Axisymmetric Finite
Element Analysis," (to be published).

56

™ sxs .
e e A T P e o A SRSt b & el n it L




" a = R A F et DA/ a1 e il B4k e ns Sy
AN AT 3 A DT DL F P P Y O e VOTMRIE KA ST I e, s SUERATS Sl e TSR s b TN IR R FEAC A TN SHRNAT S St R SR T DARITI IR AT PR
ATV I 3 S DT

N e b A N——— e < NN ARG L TIIVWE S S nem b

41, Argyris, J.H., 'Matrix Aualysis of Three-Dimensional Elastic Media
Small and Large Displacements,” AIAA J., Vol. 3, No. 1, p. 45,
January 1965,

42, Jones, R.E. and Strome, L,R., "A Survey of the Analysis of Shells by
the Displacement Method," Conf. on Matrix Methods in Structural Mechanics,
Dayton, Ohio, October 1965,

43, Walz, J.E., Fulton R.E., and Cyrus, N.J., "Accuracy and Convergence
of Pinite Element Approximations," Second Conf, on Matrix Methods in
3tructural Mechanics, October 1968,

44, Leissa, A.W.,, "Investigstion of the Utilization of the Pointr Matching
Method for the Solution of Various Boundary Value Problems," AFFDL~-TR-
66-186, 1966.

45, Hartung, R.F,, "An Assessment of Current Capability for Computer Analysis
of Shell Structures," AFFDL Technical Report (Prelim, Draft), Feb. 1970.

46, Sanders, J. Lyell, Jr.,, '"Nonlinear Theories for Thin Shells," Quart.
Appl, Math,, Vol. 21, p. 21, 1963,

5T




QXA hprrne?

e R

2o A RS T CNT LR AN Ry e AR O Gt

N

ot %

Fre
A
o,
R
N
=
s

SR ri o

4

QUESTIONS AND COMMENTS FOLLOWING GREENBAUM'S TALK

COMMENT: When you listed the errors involved in the finii.
difference method, I think that you omitted geometric idealization errors,
This is the same kind of error that you listed for finite element methods.
For example, in a one dimensional shell of revolution problem, if I tak.
large intervals between node points along the meridian, then I'm going

to get poor answers by either method because of geometric idealization

error.

GREENBAUM: Let me restate what I said. In the finite difference
method we discretize the governing equations. However, in those govern-
ing equations we actually do treat, for example, the curvature of the

shell and we do express the curvature at each nodal point. Now in the
finite element technique, however, when we represent the same structure
with 2 flat element we do not include the curvature of the element. This

is what [ really referred to by the phrase geometric errors.

COMMENT: On the same question I'd like to comment that there

is a close connection between the type of errors in the finite and the finite
difference methods. I think you use finite differences in the finite element
method in as much as you base it on the variational equation. You approxi-
mate the derivatives in the energy integral by their finite difference approxi-
mations and then you perform a numerical integration. As you mentioned,
you can derive equations based on finite differences which coincide with
equations based on finite elements. If you can come up with the same

equations, the errors must be closely related in both methods.
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I'd like to comment further that you didn't mention mixed methods in your
list of methods. While they are less well known, I know of one mixed
where a curved triangular element was devised and excellent practical
results were obtained with it. However, no theoretical convergence proof

was provided for the method,

QUESTION: In equation 4, you included only linear terms, If
you have nonlinear terms, would you comment on the way in which this affects
the finite difference formulation, the solution procedures used and ° 7
advantage which might accrue to finite difference or finite element .ods?

Is the bandwidth of the matrices affected?

GEREENBAUM: Normally, in a ronlinear problem, you wind np with
s a series of nonlinear algebraic equations. You can use several techniques
to obtain a solution to this set of equations. The most common technique

used today and perhaps the best one from a ccnvergence standpoint is

W

:» Newton's method, in which you essentially assume a solution plus a correc-
: tion for that solution and then iterate until the solution converges. However,
' the nonlinearity itself does not really increase the bandwidth of the equations.
- It just complicates the solution of the final nonlinear equations.

7

; ; As far as a difference between finite element techniques and finite differ-

: E ence in treating nonlinear problems, this depends upon the background of

; E the analyst. Ihave heard it said by finite difference experts that finite

% '

‘ ‘ difference techniques are easier to use and, of course, similar statements

4 have been made by finite element experts. So I really would leave the

7-; question as to which method is better, from the linear or nonlinear standpoint,
3 to the individual investigators. I really could not distinguish a difference

. 59
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there myself between finite difference and finite element.

COMMENT: I believe that Dr. Dupuis of Brown has developed

a curved triangular element which is compatible and convergent. Some of

the results are shown in his paper to be presented tomorrow,

QUESTION: I guess my question stems from ignorance about
the finite element rnethod. I don't really understand whether we are dis-
cretizing the structure in the finite element method. Suppose we take a
general curved shell and divide it into small regions without discretizing
the structure at all. Now within each region we assume the displacement
to have a certain polynomial form with undetermined coefficients. We then
for:.. the energy expression and minimize it with respect to these coeffi-

cients in the presence of constraint conditions between the regions which

have to do with displacement compatibility. Now if we set up the problem

in the way that I've just outlined, what are the differences, say, in that

"Rt M S IR

method and the finite element method? And if there are none, then [

IS
i

don't see where the structural ideatization comes in.

e

GREENBAUM: That type of technique could be used to essentially

derive an eiement stiffness matrix; that is, you could use the actual shell

o Phutagt,

geometry. You alsc could use some numerical technique to integrate the
actual geometry over the proper thickness and the proper surface., Strictly
) speaking, if yuu did this, it would be called the finite element method.
However, I would like to point out-that that is not normally how the finite

i element method is used in practice. In practice we normally discretize
the structure with an assemblage of elements which do not actually repre-

A sent the real geometry. They approximate it but they are not exact.
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COMMENT: I was wondering if you had given some thought to
representing ‘i~ undeformed geometry using things like Coon surface patches
which people ut General Motors and other places use to model surfaces. I
think it might be appropriate in finite differences in locating points on the
surface and in finite elements in defining the geometry for making your
integrations. Maybe some of the surface representation work that's been
done around the country by people not normally in structural analysis

might be interesting to investigate,

COMMENT: I've heard some vague comments concerning various
other methods of solving large shell problems. One of them is a spline f{it
method and the other would be a direct search method. Can you make any

comments on the appropriateness of these techniques for very large problems?

GREENBAUM: I would say that the energy search technique is a
procedure that we use to soive the final equations; it is not, in my esti-
mation, the method itself. For example, the finite element method can
employ dirvect energy search techniques. So I would label this as a
mathematical tool to solve the final algebraic equations but not to be a
new numerical method. I'm not familiar with the spline technique you

mentioned.

QUESTION: You really didn't dea! with the force method of
structural analysis and did not refer to the force method of getting the
stiffness element. Would you explain why? Paul Denke has warned us
that the stiffness method can fail due to loss of numerical significance
when element stiffnesses vary greatly. Experience at rather

crucial times in development programs has indicated that this
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does happen and the forc:= method, again according to him, is not subject

to this sort of failure. I think this is a fact we should 2t least continue

} to recognize.

GREENBAUM: I'm afraid that my experience with the force method
is rather limited. However, many people believe that the force method

is extremely hard to use. The displacement method, on the other hand, is
a lot easier to use and yet is more general, and hence they tend to use it.
If there is a force method exponent in the audience, I'd prefer to leave it

to him to answer that.

COMMENT: Perhaps the following remarks will help, We set

up equilibrium conditions and continuity conditions within the total structure
at a finite number of node points, using a finite number of force variables
and a finite number of displacement variables. We can set up the governing
equations for this system consisting of equilibrium conditions and displace-
ment continuity conditions at all the nodes of the structure. If we then
attempt to solve the equilibrium conditions among the forces first and
thereafter the continuity conditions, we arrive at the force method. And
this method requires that we designate in one way or the other the so-called
redundant forces which Denke and others have accomplished by the so-called
structural cutter or automatic selection of the redundants. In the displace-
ment method, the continuity condition is first resolved by the assumption

of a unit displacement and then the equilibrium conditions at the nodes

are set up in termas of the displacements. The elements which are used

in these two methods could be the same type. They do not have to be in

any way subject to the restriction that a force element has to be used in
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the force method or displacement method developed element in the dis-
placement method. Once the selection of the redundants, which is the
most difficult part of the force method, has been made, from that moment
on the force method is as easy to use as the displacement method. You
can always make a badly behaving structure or a well behaving structural

model in the two methods.

WALTON: Each chairman has been asked to close his session
with a summary of at least what he considers the important points raised.
From my own personal point of view the mos’. important thing said was

Dr. Stein's statement in favor of shared computer programs. I concur.

I too believe that the test of use by many different people in different
institutions is the best way to hone a program to excellence. I would

add that mere distributior of computer programs, however, is not

sharing in this sense. It is essential to share the experience with them

as well., A point in this connection which Dr. Stein did not raise but which
I think is important concerns the matter of confidence in a program. ‘Too
often we find the situation where a program will actually have the capability
to provide us with information on which to base a better engineering decision
but engineering management will fall back on older and more conservative
methods of judgment simply because there is not a broad enough basis of
confidence in a new program. If a program is good and many people use it,
then many people know it is good and it becomes much easier to induce

management to actually cut metal on the basis of the program results.

It is noteworthy, I think, that both authors agreed on the existence of

basically three significant approaches to numerical analysis of shells.

63

NI A SRRV 73 PN i T mbe o oD e s e L -




A2 SRPRBPANMARN SIS ETUN 2 ST 3

Finite elements, finite differences, and forward integraticn., I was interested
in Dr., Greenbaum's assessment that all three methods worked for the
essentially one dimensional proklems, and that for this class of problems

all three are about equal in ease of application. I would like to note what

I consider an important exception to Dr. Stein's statement where he said

that the computer has not had much of an impact on analytical solutions,

that is, exact solutions. It was only through the advent of the

digital computer that it became possible to compute exact exponential

solutions of the eighth order equations for cylindrical shells as first pro-

posed, I think by Flugge, and implemented by Dr. Forsberg of Lockheed.

Finally, I think we should all take note of Dr. Greenbaum's evident feeling
and I did not hear it challenged that a truly adequate finite element does not
yet exist. I think we should before this week is out try to bring t¢ the sur-

face the reasons why such an element is so long in forthcoming.
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*
A SURVEY OF SPAKSE MATRIX TECHNCLOGY
Ralph A. Willoughby
IBM Thomas J. Watson Research Center

Yorktown leights, New York

ATSTRACT

Efficient techniques for handling sparse matrix calculations are an
important aspect of problem solving in a wide spectrum of applications. There
is a long history of mathematical devclopment of iterative techniques for the
numerical solution of partial differential equations which will not be system-
atically surveyed here. Instzad the emphasis will be on direct methods for
solving Ax=b for x where most of the elements of A are zero. These lattev
techniques have arisen indeperdently in such application areas as computational
circuit design, linee: programming, power systems, and structural mechanics.
Each applicatior area involves a certain set of special features relative to
sparse matrix problem classes. These features are exploited in program
packages to achieve a high degree of efficlency for the application. There
is an inner core of common mathematicai and computational features, and an
important aim of this paper is to survey these "common features."

The comments in the paper concerning the interaction of sparse matrix
technology with the architecture of the hardware and systems software of
evolving information processing systems are those of the author himself. They
reflect his point of view as a long-time numerical analyst and computer user
in various large problem areas. Details concerning existing and planned

hardware and software systems are beyond the scope of this survey.

*Extended version of invited lecture at the Conference on Computer Oriented
Analysis of Shell Structures, Locuhced, Palo Al o Research Laboratory {August
1970) co-sponsorcd by Lockheed Missiles and Space Company, Palo Alto, Califoruia
and Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio.
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I. WTRODUCTION

The emphasis in this eurvey is on recent developments in direct methods
ior solving sparse matrix problems. Therc are a large number of computer
programs for sparse matrix calculations but only a relatively small number
of basic mathematical ideas underlying these programs. A primary objective

of this paper is to provide an understanding of these concepts.

The concepts* underlying sparse matrix calculations fall into four
classes: (a) combinatorial amalysis of the ordering of rows and columns,
(b) floating point oper:ii-ns on secalars, vectors and matrices, (c) data
management, and (d) programming. Programming is a critical aspect of the

efficiency of the sparse matrix calculations, but it is beyond the scope of

this paper to discuss programming details.

Frequent use is made throughout the papexr of three letter mnemonics for
important concepts. A mmemonics dictionary is provided in section 14, and this
also serves as an index for where these concepts are discussed, An extensive
bibliography and author list is also given in section 14, 1lhree parts of the
bibliography are organized chronologically by subject. They are: E. Eigenvalues
and Eigenvectors, Sparse Matvices; F, Computer Architecture, Parallelism,

There are

ﬁémory Hierarchy, Data Management; and G. Preserving Sparseness.

119 more references and these are listed in alphabetical oxder of the first
author.
The primary motivation for a number of people working in sparse matrix

research has been the computational design of large scale integrated circuits,

This work will be discussed briefly in section 2,

*
Probl :m modeling is an important related concept, but will only be mentioned
in passing in this paper.
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Success with this part of sparse matrix technology led to an investigation
of other app ication areas., Literaiure search and personsal contact focused
the author's attention on linear programming (73], power systems [91], aad

structural mechanics [103]). It became clear that cross fertilization in the

fieid of sparse matrix computations would be very useful. Thus, a Symposium

on Sparse Matrices and lheir Applications was held at the IBM Research Center

on September 9-10, 1968, The table of contents for the proceedings [112] is

given in section 3, along with the table of contents for a similar conference [78]
organized by the Institute of Mathematics and Its Applications and held at Oxrford
Lriversity, Englanc, April 6-8, 1° .. When refrrence is male to papers in these
proceedings, it is via the mnemonics SMO (Sparse Matrix Oxford conference, p. 3.2)

and SMY (Sparse Matrix Yorktown conference, p. 3.3).

Algorithm preliminaries are presented in section 4. .. section 5, the

following algorithms are discussed: Crout Triangular Factorization, Row
Gaussian Elimination, Product Form of the Inverse, and Elimination Form of

the Inverse.

Symmetric matrices are the subject of section 6, and band matrices together
with band-like domains are discussed in gectior 7., Some comments are also
made in gection 7 about certain itetrative methods. Those aspects of graph
theory which directly relate to the ordering problem for sparse matrix calcu-
lations are discussed in section 8. Partitioning techaiques are considered

in section 9.

1f Pivoting For Size (PFS) is involved in a disorderly sparse matrix,

then the tradit-.~al strategies for pivot choice are often repiaced by threshold
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pivoting. This is especlally true in the linear programming area. There

is as yet no adequate treatment for the error analysis associated with this
strategy.* However, a sketch of the general error analysis situation in
nunerical linear algebra is given i: section 10, Also, a detailed discussion

of matrix reducibility is included here, since it is related to some aspects of

error analysis.

Sections J1-13 concern various aspects of the relationship between sparse
matrix technology and the architecture of the hardware and systems software

for information processing aystems.

*
At least, as far as the author is avare of in the sxisting literature.
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2.  SPARSE MATRICES IN NETWORK DESIGN

i
;

A novel approach [41) to the numerical treatment of sparse matrix problems
has been motivated by computational design of largé scale integrated circuits,
This section is devoted to a discussion of the sparse matrix technology asso-
ciated with a speciul class of computational design problems; namely, the

*
optimal design of transistor switching circuits [41; G-46].

2 The technology is aimed at achieving efficiency in the numerical solution
of time dependent ordinery differential equations. One does not necessarily
have the property of diagonal dominance nor of symmetry. Moreover, the coeffi-
- cient matrix can have a highly irregular sparseness pattern. This level of

; generality in the coefficient matrix is also present in the sparse matrix

problems for linear programming.

3 The computational circuit design problems have a special feature; namely,
the sparseness structure of the coefficient matrix is fixed over a large
number of cases, The systematic exploitation of this feature has resulted in
é a high level of efficiency for the computational design programs which use

this sparse matrix technology.

$a 248 Spale el

In the subsequent paragraphs, a brief description is given of the mathe-~

matical aspects of the computational design of transistor switching circuits.

RS B

5 One is concerned in these problems with determining how thc transient switching
behavior depends on a vector of design parameters, p, and modifying p so

that the behavior is "optimal." This behavior is characterized by the solution_

x
G~46 means reference 46 in *..e Preserving Sparseness part, G, »f the biblio-
i graphy at the end of this paper.

i
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w = w(t), to the initial value problem,

wom £(t,w,p) (2.1)

oSty Associated with (2.1) is a criterion

function C = C(p) > G, and the aim of the analysis is to determine the vector p

on the time interval, t

which minimizes C. In order for optimization studies of this type to be feasible
for realistic circuit models (e.g., 100-1000 equations in (2.1)), highly eificient

numerical integration techniques 2 :e required.

The system (2.1) was usuvally stiff (i.e., there were widely different
time constants in the sye*em), and, as a result, predictor-corrector and explicit
Runge-Kutta methods were not suicable. Liniger and the author proposed [56],
along with others (see [56] tor references) the use of an "essentially"

unconditionally stabie integraticn formula for (2.1) of the implicit form,

Vel T ahwn+1 = R, (2.2)

where R involves w, w for t<t and t_ .= t + h. The nonlinear system
-n, n+tl n

*
(2.2) must be solved by a strongly convergent method, and Newtun's method

was proposed.

(k) w(k) (2.3)

®, .. . _
(I- chJY’) &w =R+ ahwn+1 1

]
In order to control the growth of roundoff error, it is important to solve

first for <w 1n (2.3) and theu find the new w from (2.5). The form 72.3)
is closcly related to the method of Itevative Refinement (64, 66] for lincar
algebriic equations, and this will be Ciscussed later in sections 4 and 10.
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n+l nty TV (2.5)

wawe J » 3f/3w = Jacobian Matrix. In [G-46], a similar approach was adapted

*
to a modified fora of Gear's method.

It has been repeatedly shown that this strongly implicit epproach greatly
relaxes the conditions controlling the choice of At = h, Kfficiency of the
method depends cricrically on the ability to solve (2.3) fast, reliably, and

avtownatically.

System (2.3) is of the form
AX = b, (2.6)

*k
and, fortunately, the conefficient matrix, A, is usually sparse. Moreover,
Kkk
(2.6) will be solved a large number of tires, but SSI(A) (Sparseness Structure
Information of A) is fixed, and this has been an important aspect of the sparse

matrix technology developed in this area.

*
C. W. Gear, Proc. IFIP Congress, Edinburgl_ Scotland 71968) pp.A81-A85, [128].

AR
That is, the number N(A) of nonzero elaments of A is <<n2, vhere A 1is an

nxn matrix.
fkk
For notational convenieunce, SSL(A) is often represented by the Boolean Sparse-

ness Matrix (BSM) associated with A, where 1 means nonzero. In sparse matrix
programs, however, a Threaded index List with Pointers (TLP) is more appropriate
[72]. See also Zollenkopf's paper SMO-6 [78].
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The matrix A 1is not positive definite symmetric nor is it diagonally
dominant, Moreover, SSI(A) is arbitrary. However, if one fixes, a priori,
the order in which the equations and unknowns are processed in Guassian
2limination or in triangular factorization, then the entire sequence of
machine operations nceded to solve (2.6) is also determined, a priori, simply
from SSI(A). The sparseness in b could also be utilized, but usually b is

considered full.

Let A = LU where L = (Eij), £1j = 0 for j>i (lower triangular), U = (uij)’
uu =], “1j = § for j<i (unit upper triangular), It ia convenient to introduce
a composite L\U matrix as C = (cij) where cij - 2ij for j<i and cij = uij for

*
j>1. Each element of C 1is generated by a single formula
m-1 )
cyy " (clJ - kzlcik ckj)d (2.7)
where m = min(1,4), d = 1 for 4>J, and 4 = c,* 4f 4<j. If a,= 0 and,

for l<k<m-1, c = 0, then c,, is "logical y zero." Otherwise, a reduced

1k k3
formula defines cij'

1]
In this formula only nonzero numbers occur.

Gustavson created a highly efficient Symbolic Factorization Program (SFP),
GNSO (GeNerate SOlve) [40]. GNSO uses SSI(A) to generate a linear (loop-free)
code SOLVE, which is specifically tailored to the zero-nonzero structure of A.
Only nonzr:;o quantities are stored and processed. SSI{C) and operation counts
in SOLVE are biproducts of GNSO. GNSOIN is similar to GNSO, but uses TLP's to

represent 551's. A FORTRAN listing for GNSOIN is available upon request to

*
8

) s, = 0 by definition if B<a,
k=g

T2
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Gustavson. These ideas have been refined and extended in [G-46],

ki
oy
k
3
4
A

; The program SOLVE can be very long, and as a result, Chang {112, pp. 113-

*
122] created a program SFACT, which ugses SSI(A) to generate SSI(C) in the

; context of the Row Gaussian Elimination (RGE) programs developed by Tinney

; and his colleagues [71, 72, 83, 98).

7

é Developments of this type and others have resulted in vastly improved

f network analysis programs and work is still continuing in this area. However,
; much of the work done is of a general nature not particular to network design
f and can be utilized in other application areas. In particular, computational
F design in engineering is, itself, a vast area which can greatly benefit by

% advances in sparse matrix technology. It is expected that these advances will
; continue for many more years.

é

Ay

X
E Presented at Cthe Sparse Matrix Yorktown (SMY) conference. The table of contents
. for the proceedings [112] are given here in section 3 along with the contents

< for the proceedirgs of the Sparse Matrix Oxf{ord (SMO) conference [78].
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3. SPARSE MATRIX SYMPOSIA

Sparse matrix problems play an important role in a nurber of application
areas; e.g., (a) Partial Differential Equations (PDE's) [28, 101, 102}, (b)
electronic circuits [16], (c) linecar programuing {73]), (d) power systems [91],
and (e) structural mechanics {103]. Sparse Matrix Algorithis (SMA's) have been
extensively developed in cach application area, and special features nave
been exploited in program packages to achieve a high degree of efficiency.
There is, however, an inner core of common features, and two recent sparse
matrix symposia {78, 112] were organized to heiv idantify some of these

features and to survey the field of sparse matrix methods,

Certain important topics were basically not covered in either symposium;
e.g., (a) SMA's for PDE‘s,* (b) eigenvalue, eigenvector calculations {E-R1]},and
(c) error analysis [109]. However, many iwportant topics relating to sparse
matrix problems were covered, and certain of these topics will be discussed
in other ‘.ections of this paper. As an aid to the reader and for referencing
purposes, the tables of contents are given on the succeeding pages for the

two conferences.

*
Weingstein [112, pp.139-148) preseuted a paper on Stone's method [22,23,93,104]
for solving certain classes of PDE's, ’

AR g

R O
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SMO - SPARSE }u.JRIX OXFORD CONFERENCE PROCEEDINGS [78]

Large Sparse Sets of Lincar Equations

J. K. Reid (Ed.), Academic Press, London (1971), organized by the Institute

of Mathematics and Its Applications, and held at Oxford University, England
(Apxil 1970).

5.
6.

7.

8.

10.
110

12.

13,

14,

15.

16.

17.

TAELE OF CONTLMNTS

Beale; L., Sparseness in Linear Progranming.
Allwood, R., Matrix Mechods of Structural Analysis.
Larcombe, M., A List Processing Approach to the Sclutiou of Largs
Sparse 3ets of Matrix Equations and the Factorization of the Overall
Matrix,
Walsh, J., Dircct and Indirect Methods.
Ashkenazi, V., Geodetic Normal Equations,

Zollenkopf, K., Bi-factorization - Basic Computational Algorithm
and Programming Techniques,

Jennings, A., Tuff, A., A Direct Method for the Solution of Large
Sparse Symmetric Simultaneous Equations.

Baumann, R., Sparseness in Power System Equations.

Churchill, M., A Sparse Matrix Procedure for Power Systems Analysis
Programs.

Harary, F., Sparse Matrices and Graph Theory.
Tewarson, R., Sorting and Ordering Sparse Linear Systems.

Baty, J., Stewart, K., Organization of Network Equations Using
Dissection Theory.

Carre, B., An Elimination Method for Minimal-cost Network Flow Problems.

de Buchet, J., How to Take into Account the Low Density of Matrices to
Design a Mathematical Programming Package. Relevant Effects on Optimi-
zation and Inversion Algorithns.

Ogbuobiri, E., Sparsity Techniques in Power-System Grid-Expansion
Planning.

Reid, J., On the Method of Conjugate Gia i2nts for the Solution of
Large Sparse Systems of Linear “quations.

Willoughby R., Sparse Matrix Algorithms snd Their Relation to Problem

Classes and Computer Architecture.
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4.,  ALGORITUM PRELIMINARLES

: A, General Remarks

There are a large aumber of methods which take advantage of special
properties of the coefficient matrix, but if A 1is simply a general nxn sparse
matrix, then there are three main types of direct sparse matrix algorithms for
solving Ax=b for x. These are based respectively on Gaussian elimination,
triangular factorization, and Gauss~Jordan complete elimination. There are
methods basad on orthogonal transformations, such as the QR method {E~1,~2)

3 which are very important for eigenvalue-eigenvector calculations, but they

are not, in general, economical when applied to unsystematically sparse matrices.

Each direct algorithm has two stzges: FIN (Form of the INverse) stage,
that is, the factorization or transformation of A into a form appropriate
3 for repeated application of the second stage; (2) SUB (SUBstitution) stage,

that is, the applying of the FIN(A) to the vector b.

Even if there is a single right hand vector, b, the SUB stage is often

3 applied repeatedly because of the method of ITerative Refinement (ITR) [64,66]
é‘ which will be described later in this section.

% If it were true that A—l is sparse, and many SUR stages are to be

La.

g performed, then it would be an easy matter to code a sparse matrix-vector

multiplication and then form x = Anlb. However, A-l is logically full unless

e
A s e s

A 1is reducible; that is, unless B = PlAPz is Block Lower Triangular (BLT) for

-

i

some pair of permutation matrices Pl,P2[25,1l3; G-6,-10,-11,-20,-29],

Dt 5 W
Lot o

Sparse Matrix Algorithms (SMA's) are decigned vo preserve sparseness in

fic
D
>
B
<

*
FIN(A) in the context of numerically stable pivoting. Matrices which are

*
That is, a few applications of ITR are sufficient to achieve desired accuracy
in the solution vector.

7
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DID (Dlagonally Deninant) or SYP (SYrmetric and Positive definite) have the
desirable featurce of allowing diagenal piveting in any order. Here the order-

ing to prescrve sparseness (see part G in the bibliography at the end of the paper
for references) strategies can be applied a priori to SSI(A). This is followed

by PN (Pivoting dewn the Diagonal in Natural order). If, also, SSI(A) is fixed

over a large number of cases, then SIP's are important,

*
For some classes of problems PFS (Pivoting For Size) is required, and many
SMA's have a PFS version. Of course, for PFS to be effective, the matrix must

not be poorly scaled.

A SMA designed to solve Ax=b for x can be extended to solve ATz-c for

T

z, where AT is the transpose of A. The system ATz=c is the same as zTA = c,

so in the second stage, one replaces column SUB by row SUB.

B. Goals of SMA's

Kk
(1) Avoid operating with and storing zero floating point numbers.

{2) Order equations and unknowns Lo achieve efficiency in operations
count and/or access to information (data and code).

(3) Achieve sequential memory reterencing*** both at the elenent
and at the vector level.

(4) Have efficient methods for handling the data managenen. aspects of SMA's.

*
This is especially true for SYI(SYrmetric Indefinite) matrices [13,14; E-8, -25]

and for the calculation of eigenvalues and eigenvectors by the method of INI
(INverse Iteratlon) [E-R1, -18).
*%

Thus the usual A(I,J) notation is replaced by A(K), say, where A(K)#0.
ke
The simplest schemes store and process the nonzero a, .'s row by row or column

by colunn, but otiier schemes, such as rows on one side ®f the diagonal and columns
on the otuer sidec, are also used.

78




Incorporate automatic segmentation for efficient use of serial backup
store on large problems (see section 12, and part F of the bibliography).

(6) Exploit special propecties of the matrix and/or the problem class.

*
C. Basic Macro-Operations (MOP's)

@« u ~By/6 , (4.1)
a+ (a -va)p , (4.2
vV « V-Ow , (4.3)
Ve v ou’ ; (4.4)

where a,8,v,8,0 are scalars; p=1 or p-6-1(6=pivot\; v,w are column vectors;

and va = Zviwi= inner product.

MOP (4.1) is the classic element transformation which is used in each pivot
step for Gaussian elimination, whereas (4.2)-{4.4) are vector oriented MOP's.
MOP (4.2) has the advantage of requiring only onc temporary extended register
(or storage location(s)) to hold the accunulatieu of extra precision producte
AL On the other hand (4.3) and (4.4) are inherently parallel. MOP (4.2) is
basic in the FIN stage for triangular factorization, whereas it is (4.3) or
(4.4) in the FIN stage of Gaussian or Gauss-Jordan elimination. Which of the
MOP's are involved in the SUB stage depends on the type of substitution (row

or column) and on how the matrices involved in the FIN(A) are stored.

* e means "is the result of evaluating" as in the programming language APL [47].
This language has many features which make it desirable for representing SMA's
and other algorithms which deal with arrays as well as a variety of numbers such
as integevs, Boolean 0 and 1, and floating point. APL\360 Prirzer Student Text is
available through I3M branch offices. Note that expressions (4.1)-(4.3) are not
"pure" APL expressions as they stand, since it is not assumed that the reader
knows the powerful operation set and conventions associated with APL.
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If v is being processed repeatedly via (4.2)-(4.4), then it is a common

technique to store v as a full vector, “eros and all. In this way one can
execute (4.2)-(4.4) by merely indexing over the nonzero components of the sparse

vector w.

D. Method of ITecrative Refinement (ITR) [64,66)

" el
Rty lafiils

*
Assume one is solving Ax=b for x and an adequate FIN(A) has been formed,

and exit if r

EI then ITR procesds as follows:
3 , (1) Given an approximate solution x(k) (e.g., take x(o)- 0), form**
- £ 2 p ax .5)

and/or x is satisfactary, otherwise go to (2).

P TR

(>

(2) Apply SUR stage to FIN{A) to solve for Ax in

Abx = K (4.6)

kt1) (k)

(3) Set x( + 8%, then go to (1).

ST g
e TN

E. Elementary Matrices [46, p.3].

2w

*kk
The rank one matrix va, whose (1,j) element is wivj, ple - number of

important roles in numerical linear algebra, and is especially important when

g

S

used in the form of an elementary matrix, I + va, where I 1s the identity

matrix, Note that, if E = I + va, then 6(E) = determinant of E = 1 + va.

e

[ .
A

e G

Moreover, if 8(E) # 0, then E-l- 1 —pva whexe p = (1 + va)-l.

b One class of applications for elementary matrices are the Methods of

A3 *kk
Modified Matrices (MM's) [4,8,116-119; 45, pp. 79,83,84] '~ . There is a special

*
E One purpose of ITR is to obtain an assurance that FIN(A) is adequate, and the

" other is to repeat ITR until a satisfactory x is obtained.
(k)

Kk
It is important to form b~aAx in extended precision because of numerical

cancellation.
*2
“ That is, every 2x2 submatrix is singular but at least one element is ¥ 0.
*kkk
This is an aspect of Kron's method of tearing [52: G-1,-2,-3,-4,-5,-7,-19,-20;
SMO-32: SMY-8].
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sparse matrix version of a MPM which assumes that TIN(A) has been formed and
that

M= A+ wvl. (4.7)

The algorithm for solving Mz = ¢ for =z then procceds as follows:
(1) Solve Ax=c and Au=w for x and u respertively. Comment. Note
that, M=A+va- A(I+uvT), and, 1if (I+uvT)z = x, then Mz=c,
(2) Forma = vTx and B = viu, 1f 148=0, then exit with message, '"M 1is

singular,"

otherwise go to (3).
(3) Formg = (1+8)-lu.
(4} Form z = x~ou and exit normally. Corment, z = (I+uvT)-lx =
(I—(1+B)-luvT)x = x -0u,
An important special class of elementary matrices are those which involve
only one nontrivial column or one non-trivial row; that is, when vg is a row of
I or w is a column of 1, respectively., As is customary, one lets e

k
th
represent the k= column »f I

*
One has in particular the class of Elementary Column Matrices (ECM's)

whose properties are described below.

T
(1) Let t = (tlk”"tkk""’tnk)’ and

1 Uk

te 1

" -
Cne also has ERM's, but only LICH's are duscribed since they have been the back-
bone ot linecar programming algoviturs [62,73; 75, vol.2, pp.271-284; G-31].
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Coment. Tk- 1+ (tk--ek)ek . chj ej
-1
Assume t, ¥ 0 and let ok Ekk * then Tk is nonsingular, and
trivial to form. In fact,
-1

. T
T =1 -n (- ey

T
= - N
(1 tk ek)Dk ’

! = -
where tk tk tkke

for ¥k, and Tkek -t.

-1
Tk is

K and Dk- diag. (1,..,1,pk,1,..,1). That is,

) T] 1
. | .
o} .
-1 .| 1
Tk - ;1 — x °k
- 1
. 1 l 2

(3) Colummn SUB, If ¢ = T;lb then c¢ is calculated as follows.

(a) Leto = pkbk = If ¢ = 0, then c=b, so assume 040.

(b) For j¥¢k, cjB bj -ctjk.
Comment. MOP(4.3) is involved here.

(4) Row SUB. 1f <:'r = bTT;l, then cT is calculated as follows,

(a) If j¥k then cj = bj'

T ,
Corment. MOP (4.2) is involved here.

(5) Column MMM, Let A'ej = Aej for j¢k while A'ek = 3, and

= t, th t t t
Aek a, ¢ ays that i{s, the k¥ column of A' {s ag, otherwise A' is A,

Algorithm for solving A'z = ¢ for 2z procceds as follows:

(a) Solve Ax=c and Atkc a& for x and t, respectively. Corment,

Define Tk as In 1).
b2

(3 AT R 2Tt vk Fii

Dot n

M
4
N
.
PN _n."ﬁ
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(b) 1f t), = 0 then A' is singular so exit with message, otherwise

go to (c).

(c) Form z = Tglx. Comment. T;1 is rormed ae in (2) and z is formed
according to (3), then z = T;lx - T;I(A-lc) - (A')-lc.

e o————te . 4
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5.  SPARSLE MATRIX ALGORITHMS (SMA's). GENERAL CASE

A. General Remarks

In the FIN stage of SMA's there are two pivoting situations, namely
(1) PDN (Pivoting down the Diagonal in Natural order) and (2) PFS (Pivoting
For Size). Wilkinson [E-R1l, pp. 225-227] has a TRiangular Factorization (TRF)
method with interchanges, which Forsythe [29] published as an algorithm for
the full matrix case.* The disorderly sparse matrix is not well adapted
to PFS versions of triangular factorization, but, by keeping row and/or column

permutation lists the other SMA's can be adapted to certain PFS strategies.

B. Notation

A= (aij)

L= (Lij), zij-o for j>i (lower triangular)

lii »J<n

U= (nij), U 1, uij-o for j<i (unit upper triangular)
C = compogite L\U matrix = (cij)

213 for j<i
cij u

uij for j>1
D = diag. (111,222, ...,lnn) = diagonal matrix of pivots.
W= LD-l = ynit lower triangular matrix

R = DU = uypper triangular matrix

A= LU = WR = WDU.

*k
C. Crout Triangular Factorization

(1)FIN Stage. 1l<m<n, m<i<n, mtl<j<n (m#n),

*Band matrices (see section 7) are another case which has been considered [E-8].

A%
As befor- Esk = 0 by definition if 8<a.
k=q

O

R e O R P T (N R A S ST TN By Sl ] R ORI PR RV hLA L G R .-zim{zm;avwwvxggg@;&m;wsxfwg:;;r_:‘:;'c;(mtnavrﬁﬁ,-,ﬁg?i&t;.nggﬂw
2

Iy




o2 RuP OV RV S SR W AR S L

mil
L. =a, _~ ) 4L u ’
| pa - tm T L TakCkn
-1

t P ¢
5 ®n " “um ( mn 70
'%’ mi;
- ‘(il"‘_:-.u.)C
] mj 1j w=1 mk ki’ m
1 (2) Forward SUB. Ly = b, l<m<n,
; m=-1
¢ AL ) R IRLIS
: k=1
E (3) Backward SUB. Ux = y, n>m>},
g !{
1 X =y - u .
3 m B paml ik
¢ *
3 D. Row Gaussian Elimination (RGE).
5 Remarks. Here, A = UR, and all gtorage and processing for A, W, and R is
b by rows. W is formed element by element, and MOP (4.4) is used repeatedly in
< the FIN stage (this is commonly called the elimination stage in RGE). Column SUB
. is the most common situation, and since W imd R are stored by rows, forward
and backward SUB has (4.2) as the basic MOP, Only the FIN stage is outlined
B below.
3 T, T
; (1 153
4 (2) For 2<k<n, v az;
, (8) For 1l<j<k-1,
4 v [r
1 ¥y " Vy/Tys0
: v« Vi L r
. ki"y "’
;‘ (b) Vig = s ey 0 for j>k;
(c) r: - vT.
:
; Let aT = eTA = kch row of A, etc.
k%
3
I

séﬁ
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E. Product Form of the Inverse (PFIl)

. -1 -1 ~1
(1) FIN stage. Tn . T2 Tl A=1;

(a) L, = a = Ael,

(b) For 2<k<n,

w1 w1 . -
tk lk—l . .rl ak where ak Aek.
(2) SUB stage (column case)

.
3
3
3
i
Z
=z
E
E
3
x
&
£
=
2
=
i
i
3
2
x
2
3
4
b
2
£
5
]
3
E
&
k7
4
q
=
3
3

x= A 71, 1Tl
n 1

| F, Llimination Form of the Inverse (EFI)

(1) FIN stage: L;l .. L;l A=y;

(a) L, = T, as in PFI;

UL Ve S AR DA S R S T ik ledd M uria

. 11 ~1 -
(b) For 2sksn let Vi ®Lyy ¢+ Ly 8, vhere a = Ae, then

; u,, for j<k
] v, =]
% { 3 zjk for j>k;
3 1 P
3 .

!
3 Lk - tax 3
.' * 1 g
‘ ]
. "nk 1 ;
g (¢) By a trivial factorization ?
3 V=U,. -0 g
: where %
2 .f *
3 Elcmentary column matrices (sec sectiecn 4, part E) are the basic tools in the
4 PFI algorithm.
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1 lﬁ-u‘

f2) SUB stage {column case)

e TR IR
2 n n

-1
o s L1 b.
Remarks. The EFI algorithm as prescnted is column-oriented. However, if one
applies the transpose operation to each formula in the factorization stage of
a'gorithm F above, the result is a row EFIl algorithm, which is an alternate

way of handling RGE. Llementary row matrices which are either upper triangular

or unit lower triangular are the basic operational tcol in rou EFI,

The PFI algorithm has an elegant simplicity ir its formulation, but it has
the sparseness structure of L\U'1 rather than the preferred L\U of the other

algorithms discussed here [G-43].

G. Pivoting For Size (PFS)

Remarks. PFS5 has been a critical aspect of algerithms for matricz2s which
are neither positive definite symmetric nor diagonally dominant. The computa-
tional price one pays for this in dealing with full or band matrices is reasonable,

but where the sparseness structure is arbitrary, this is not necessarily the case.
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Care must be excrcised in choosing pivots to also preserve sparseness. Clearly,
zeros and ncar-zevos cannot be used as pivots, so some threshold criterion at

least is necessary. This threskold approach has been standard in LP calculations.,

In full matrix and band matrix algorithms, one has two options. The first
{8 to interchange rows and/or columns tv bring the mth pivot element into the
{m,m) position. This option has the advantage of simplifying subszquent indexing
operationc, The second option leaves the elements in their natural location
and builds instead a row permutation (ul,uz, ...,un) and/or a column permutation
(vl,vz, ....vn) where (um,vm? is the position of the mth pivot., This requires
more involved indexing, but has the advantage of not requiring the interchange

of compacted vectors of different length.

For simplicity PFS will be discussed only for the PFL algorithm, but a
similar extension can easily be made for the RGE aud EFl algorithms., The Crout

algorithm is less suitable for this purpose when sparse matrices arzs involved.

The PFI algorithm with PFS 1s essentially the same as for the one given,

except that at the kth step, one deals with column N of A and with the ukth

component of this vector as the pivot, The nontrivial column of T'l is the

k
k:h. After n steps, the A matrix has been transformed into a permutation, P,

of the identity matrix, that is

]

88

Py g e

O I YD

. B
S Y U VN S I S VY O S R - . J



3
af

L3 T,

o,

i)

"

Farwe BV

L)

v win -

P A e . T

and

girce

i.e v permutation is futroduced to partially preserve sparseness in the
amo: b & ¢ .2, For .xample, one could process the columns in order of
in:reasins . .er of nonzeros in cach column, Because of the L\U-1 sparsecness
structure of the form of the inver.e in the PFI algorithm, a standard practice

in Lr .as been tr reorder rows and columns relative to singletons* to reduce

the matrix .o th: special block lower triangular form shown below.

el € TOS

A= by
zero
or < N
nonzero

Afl also has this same form, but, in fact, only the kernel matrix M has to be
factored if the PFI algorithm is suitably moc¢ified. The set of SMA's presented
here certainly do not represent a complete list, but thay provide insight into

the charactez of SMA's for the general case.
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* A singleten row (column) has exactly one nonzero compone.t. As in Gaussian
pivot reduction, one strika~ cut the row and colurn of the pivot elerent and

continues to search for singletons.
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SYMMETRIC MATRICES

General Remarks

If A= AT (i.e., ajj = aji) and diagonal pivoting is feasible, as in the
case of positive definite or diagonally dominant mattices,* then considerable
saving can be achicved in both storage aid operations count, However, in the
case of sparse matrices, this requires wore intricate indexing tecausz both row

and column access to elements is required ia the factorization stage.

It is Interesting to note that, 1f A i3 even symmetrical in sparseness
pattern and diagonal pivoting is feasible, then advantage can be made of this
in the design of a factcrization algorithm. This is the motivation for
Zollenkopf's Bi-Factorization (BIF) Algorithm [78; SMO-6] in which he operates
on the left of A by a sequence of elementary column matrices,** and at the
same time, on the right by a sequence of elementary row mattices.*** At the
end, A has been transformed into the identity matrix, and one thereby has
created a Form of the INverse (FIN). This is similar in character to Markowitz's
Elimination Form of the Inverse (EFI)[62] and is an extension of techniques
pioneered vy Tinney and his colleagues {G-14,-34;71,72). Zollenkopf's article
is very detailed, with flow charts, diagrams of the various matrices and examples

of handling SST's via Threaded index Lists with Pointers (TLP's).

As before, let A = LU = YR = WDU. Since A = AT, then W = UT, and thus

U, =wv /zjj = zijpj if py > 0 for 1<j<n, then one also has the

317 Yy T My
Cholesky factorization, A = GGT, where G = WDI/Z. The main point of using

*
In Power System Analysis {91] A 1is often complex symmetric with diagonal
dominance.

*k
Which are also lower triangular.

*
Which are also unit upper triangular.
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the Cholesky factorization over A = u'pu is that b (l¥c) ~ Vo (1+ ) £) so that ;

one achieves an extra bit of significance in the pivots. This has to be balanced b

against the cxtra cost of calculating 9.-].'/2 instead of 2.'1 if 8 <0 F

1, i3. i3 5

or is complex, then the ryuare root approach is not considered. #

T . * 3

B, A = U DU Factorization Z
(1) Remarks. The upper triangular portion of & will be stored and

processed row by row. As the processing proceeds, the diagonal

-1

element a is replaced by P ™ lm and am:j is replaced by

L, for mtlcj<n. Recall that

P PIZTA Bl o w R R 1Y A B U s B B Sk A A Sritd A2

| 3

F: m';_-l

I L, =a, - )32

L jm jm k=1 jk Yiem

. and that Y = lmkck . The elenent Ym will be formed when it is 5

first needed, ond it will then replace ° ,, which is no longer needed. '3,

; The diagram below illustrates this scorage situation. §

A 7

3 " 1

i \ U LT é

:

4 K = = e = kn _-__‘zjk 1

: .
] I :

{ E

a [] % 3

i jm

| ' | == =

B { ' Fa 3

4

3 ! | : §

;_«: j G s * - - - -uo- - -

p: {

g !

: !

)
Only a full matrix version is presented since the sparse matrix algoritim
requires wmore detail than is suitable for a survey such as th’..

g2

91

@reiy bt b ey

Y
P s,

RS T A Y R r U T TSP, A T R LTy eraidoney

- |
e et 4x ot ]
Sx: o T S e {
v s R Y W e T T N 3 s i &
= > eoe 3. P A AN R .




——

(2) Dectails of Alsorithi,

-1

a. Gl = an .

b. Bl = Mk for 2<k<n.
*
c. DO for 2<m<n:

1 D for mh-n, ¢ =a

k nk

2) DO for 1lcks<nel;

a) d = 9’ .kpk’

b) for m<j<n,
c, =c, -2,.4d
I T |

c) Yoo ® d (stored in (k,m) location in place of zrk).

-1
3) LI (stored in (m,m) location in place of a“m),

4) DO for mtl<k<n.

T BRI

zkm =) (stored in (m,k) location in place of amk).

Comments. The quantities, C\» m<k<n, are the partial accumulated

T T

inner products, For accuracy purposes it is desirable to use

LRy

extended precision in the formation and storage of the ck's.

i

(43

C. Conjugate Gradients Method (CGM)

AT LRI

A3

3

Reid [78; SMO-16] wrote the following in the introduction to his paper on
CGM.

"The method of conjugate gradients has been known for some time, having
been developed independently by E. Stiefel and by M. R. Hestenes with the
cooperation of J. B. Rosrer, G. Forsythe and L. Paige, but it has received
little attention recently. It is difficult to see why this has been so since
the method has several very pleasant features when regarded not as a direc*
method for the solution of full systems - f equations but as an iterative
: method for the solution of large and sparse systems. It is our purpose here
? to explain these features and to report on some numerical experiments which
compare the various versions of the algorithm that are available."
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! Comment. o, , have been formed for l<k<m-1, k+l<j<n, k+l<i<m-1, but't
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Livesley {57, p.37] found difficulties in using CGM in structural
problems. Others scem to have found difficulties which caused them to abandon
CGM as a basic sparse matrix alporithm for SYP (SYmmetric and Positive definite)
matrices, Stanton and his colleagues, on the other hand, are systematically
developing these methods for structural mechanies problems [33, 92]. They
report that preconditioning via scaling of the coefficient matrix is an

important practical consideration.

Assuming that CCM can be made numerically insensitive to accumulated
rcund-cf£ error, and can achieve sufficiently accurate results in a reasonable
number of sceps, then CGM has an attractive feature of effectively utilizing
the sparseness of the A matrix, no matter how irregular the sparseness struc-
ture is. There are only three basic maczo-operations involved ia the calculation,
namely, vtAv, a= wTv, and vev+3 w. Here again, one would treat v in each case

as a full veztor but store A compactly row by row.
Further discussion of CGM is contained in [7, 19, 20, 34, 35, 43].

D. SYmmetric Indefinite (SYI) Matrices

If M= M? but M 1is neither positive definite nor diagonally dominant,
then the problem of solving Mx = b is more complicated. Of course, one can
ignore the symmetry property of A and proceed to PFS [E-Rl]. How-
aver, more storage and operations are required by this aporoach. A different
approach has been taken in [13, 14]. Here, one applies a mixture of scalar
and 2x2 block diagonal pivoting so chat symmetry is preserved in the raduction
process. This approach has been shown to be stable when the proper care is

exercised in the choice of the 2x2 blacks.
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An interesting PFS strategy is discussed in [E-25] for the case in which
the cocfficient matrix is of the form ¥ = A -)B where ) 18 real,
A and B are real band symretric, and B is positive definite. The pivot-~
ing is stable ‘but, also, tue product of the first k pivots is the determinant
of the f:rst k rows and colurns of M., The Sturm sequence property is then

used to determine the number of eigenvalues which are greater than A {E-Rl,

p.300].
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7. BAND MATRICES AND BAND-LIKE DOMAINS (BLD's)
A matrix A = (aij) is said to have bandwidth 2k+1 {f k is the smallest

index such that a .= 0 for [i-3]> k. A bandwidth of 5 for an 88 matrix is

3

shown below,

2y 12

821 | 22 | 28 | P2

K3}

%2 1 %3 |24 | s | M6

54 | ¥ss | ®ss

%4 | "5 | %6 ] %7 | %8

75 1976 | %77 | %78

86 | *87 | %s

Band matrices are an important special class of sparse matrices, and many
efficient algorithms have been developed [36, 63, 82, 95, 97; E-R1, -8]. 1If
A allows PDN ther. the algorithms are especially easy, and if aij ¥ 0 if and

*
only if |i-j] < k (fu'l bands), then SSI(C) = SSI(A).

Assure PFS is involved, but that the mth

pivot position is chosen from among
the positions (1,m) where m<i<mtk, then in the worst case, the semiband width

above the diagonal in U is doubled [E-8, -25].

0f course, one ignores the generation of zeros by exact numerical cancellation
in dealing with SS1U's.
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1f a high level of storage and operational efficiency is desired, then

bzand matrices are too restrictive a class for many sparse matrix applications.
Again, assume A allows PDN, then the following Band-Like Domain (BLD) for

A 1is & useful sparse matrix generalization of band matrices.

Definition. Assume l<m<n then
(1) (m,m) € BLD(A).
(2) For 1l<u<m, (u,m) € BLD(A) if and only if ‘im* 0 for some i such
that 1l<i<u,
(3) For 1l<v<m, (m,v) € BLD(A) 1if and only if ‘mj* 0 for gsome 3 such
that 1<j<v,
This domain is indicated, for a typical m, in the diagram below.* As denotes

4 0.

S e men. pvm

the BSM asssociated with A, where (Ah)ij = 1 means aij

»vm—

- o © O » O © © O

B e € a—— o~

-y W e @ -

J O Y ——p
A and C both have only zeros outside BLD(A) but € may £ill come of the zero
*k
positions inside the BLD., In fact, for "tridiagonal plus' matrices, the

entire BLD for C 4s full., The 8x8 example shown below illustrates this

*
Only the pertinent zeros and nonzeros are shown.

& tridiagonal matrix is a band matrix with k=1; the "plus" mcans that not
orly is ‘ij* 0 for Ii-jli_l but also for certain other positions,

9%
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band-like character and tridiagonal plus fill-in. :
11 oo} olol]o 1|
SRR o‘ ;

0 1 1 1 6 0 [, 0 0 }

| 5

1 ) 11 1 {01 o} ¢ ‘ 3

:

Ay = o loj ol ] 1]}

0 1 ¢ ] 1 1 1 ] 3

QR T O R S T T D U D W B | :

0 0 0 1 b b 1 1

1

Note that the tridiagonal plus sparsencss structure is not necessarily preserved ;
under reorderings of the matrix A. !

Jennings [48, 49, 78; SMO-7] has exploited BLD's in his algorithms for
SYP matrices. Melosh and Bamford [65] use a related idea in their wavefront
approach to data handling, and NASTRAN (58,59,60,112;SMY-18,pp.155-158] has an

active column feature for those columns where the nonzeros extend above the band.

Tri-Diagonal Matrices (TDM's) are, in many ways, an ideal type of svarse
matrix. A great many numerical analysis papers have been devoted to TDM's

(see E-R1,-R2 for references]. TOM's are basic in many areas of numerical

*
The sycbol § means agy = 0, Sy $ 0. :




R PRI T R I SR T el s o JORNCE 217 £ 1 A

analysis, such as cigenvalue-eigenvector calculations and differential equations.
These matrices, together with the more general class of Tri-Diagonal Like (TDL)
matrices are the corncrstone of the iterative methods referred to as Alternating

Direction Implicit, Splitting, and Fractional Step.

Definftioa. A 1is a TDL matrix means

(1 $ 0 if and only if a i* 0.

%13 3

(2) For l<m<n~l there is exactly one 1 such that m+l<i<n and a8

- ¥ 0.

(3) A allows PDN,
Note that SSI(C) = SSI(A). Sec section 8 and [G-9, ~21} for a graph theoretic

discussion of TDL matrices.

One solves multidimensional partial differential equations by cycling through

a sequence of TDL problems. See [10,21,28,39,61,101,102) for surveys and some

of the earlier references. This 1s a very active subject, and many articles
continue to appear in standard numerical analysis journals. The mathematical

analysis is largely limited to the case of commuting operators [106].

These methods* are a part of a broad spectrum of iterative methods [101].
T" > tradeoffs between using sparse direct methods and various types of iterative
methods is rather poorly understood except for certain model problems [24]. For a
completely regular model problem, one can precisely estimate the computational
complexity as n #+ = where n 1s the order of the coefficient matrix. However,
this type of analysis can be misleading. If the model problem is the practical
problem to be solved, then there are special techniques such as the use of
Fourier transforms which can be used to achieve very high efficiency. On the

other hand, if the problem is irregular, then the corputational corplexity as

*
That is, those which are based on the corputational efficziency associated with
) solving TDL systems.
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n + » can be vastly differcnt than that predicted by the model problem.

Stone's method {22,23,93,104; SMY~16,pp.139-148] holds considerable promise

for certain classes of problems. The ideca here is to let M= A + N vhere N

is choscn to kill the propagation of nonzeros inside the BLD, Let M = LU, and

C be the composite L\U matrix, then M {s fuller than A but SSI(C) = S3I1(A).

This has been shown to be an effective procedure for sparse matrix problems

arising in the petrolcum industry even for certain types of coupled systems of

partial differential equations.

The Finite Slement Methods (FEM's) provide a whole new spectrum of sparse

matrix problems which have a quite different computational complexity than

the finite difference methods. For one thing, the size of the matrix is much

smaller, However, the genr=ation of the i 'trix elements is quite involved for
the more sophisticated classes of finite elements. In comparing computational
complexity of finite difference versus finite element methods, it is important
to define the problem class, and to determine the extent to which one time
symbolic preprocessing can be utilized in a parameter variation study. There is
a vast literature associated with FEM's but is not referenced here. However,

a recent report by Segethova [84] deals with direct sparse matrix methods for

matrices arising in FEM's.
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8.  GRAPHS. UNDIRECTID, DIRECTED, AND BIPARTIIE,.

There are a number of ways in which Sparscness Structure Information (SSI)
can be represented and manipulated. The use of Threaded index Lists with
Pointers (TLP's) is a powerful approach in the automatic machine computation,

but other representations are more suitable from a conceptual point of view.

The Boolean Sparscness Matrix {BSM)-.assocciated with a given sparse matrix
*
A 1s one tool, However, graphs of the sparseness structure have the advantage

of being invariant under certain classes of reorderings of the matrix A,

Graph theory is a vast field in its own right. References [42,77] provide
an introduction te certain applications of graph theory, and contain a large
number of referencee. However, only a small part of greph theory impacts the

field of direct sparse matrix algorithms,

Three types of graphs will be described briefly; namely, undirected, directed
*k
and bipartite graphs. A number of authors have used graph theory techniques

to develop pivot strategies.

Rose [79,80] has made a systematic study of the fill problem for matrices
*kk
with symmetric sparseness structure where diagonal pivoting in any order is
allowed. An undirected graph G 1s associated with Aa' The vertices {1 and

3, where i¥j, are connected by an undirected edge if and only if a, ¢ 0. The

J
labeling of the nodes is not intended to imply the order in which the nodes are

eliminated. When a pivot sequence has been specified, there is associated with

*
This matrix will be denoted by Agi (A) ¥ 0.

RET) = 1 {f and only if a

13

R
See vart G (Preserving Sparseness) in the bhibliography for some of the
refesrunces,

k% T
That {is, As = A,

*
S

S—
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G, a graph G' which represents the sparscness structure for the C matrix

(i.e., the composite L\U matrix).

o e -

The diagram below illustrates a 6x6 cxample.

A =
8

0 1 1 1 0 1

0 0 1 0 1 0
1 1| o] o 1| o 1
b i

. *

3 After "eliminating” vertex j, the vertices adjacent to J forr a cliaue,
E that is, the principal submatrix associated with the set of these vertices
: forms a full matrix. From the giaph it is clear that 5,3,4,2,1,6 1s an optimal
E: k%
- pivot sequence, and only one new edge 1is introduced in creating GC'. On the
3 other hand, the pivot sequence, 4,3,2,1,6,5 introduces 6 new edges and hence is
‘; undesirable as a pivot strategy.
3
3
: The vertex 5 has a special significance because only one vertex is adjacent
4 to it. Such terminal vertices create no fill when they are eliminated, In
3 terms of the matrix As, terminal vertices are associated with rows which have
B *
E If i¥j then vertex i 1is adjacent”to vertex 3} provided aij* 0.
3 k%
4 Joining vertex 2 and vertex 6.
i 101
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exactly two non-zero elements. If the graph is a tree {i{.e., has no cvcles)
then onc can always choose 1 terminal node at each pivot step [G-9]. A TDL

Y]
matrix is an optimally ordered tree, and Carre [G-21] has exploited this idea

in an ordering schemre for block iteration,

The class of graphs G' have been characterized by Rose as being tri-
! *ok .
g angulated.  The minimum fill problern, then, is that of determining a triangu- ;
g lation of a given graph G which introduces the least number of new edges.

An example of a triangulated graph with 5 vertices and 7 edges is shown below.

I TR LR

Py

U

¢
©

=

vl s,
SN

: If a graph G 1is triangulated then there exist pivot sequences such that no

fi1l occurs in the elimination process.

Ordering to achieve minimum bandwidth or compact BLD is motivated by a

desire to create systematic sparseness structure and/or reasonable sized moving

b Template of Active Storage (TAS). . Which of the many approaches to ordering is
3
: more fruitful depends upon the problem claes and the nature of the computing
3
Y ; system on which the problem is to be run, Clearly, if{ mwmory access is not a
e x
3 ! Relative to a pivot sequence.
] ok
3 % Every cycle with more than three edges has a cherd.,
B '
5 102
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limiting factor and a large number of cases are to be run where the sparsensss

structurc is fixed, then Rose's triangulated graph approach is a desirable

strategy.

B
e
kY

3 Now, assume AZ # As, but diagonal pivoting in any order is allowed. This

means, in particular, that aii# 0 for l<i<n. Associated with the given sparse-

ness structure, in this case, is a directed graph G where, for i¥j, there is
a directed edge from vertex j to vertex i if aij* 0. This assignment of
direction for the edge associated with a,, is best motivated by considering the \

y ij
method of substitution, as in Signal Flow Graphs (SFG's) [124-126]. 1In a SFG

RSOSSN

each equation is explicitly solved for the diagonal unknown and solution proceceds

by substitution of the right hand side expression into the other equations., !

RSO

A 6%6 nonsymmetric BSM with its associated directed graph is shown below, :

e & s

EREES UV S R e

1 ®
1 1f o] o} ol o /
O—<—O—<— Y

13 A = /

A 8

E 1 0 0 1 0 0

; 5

: This matrix is reducible and one fill is the optimal situation. A pivot

sequence which achieves this is 3,1,2,5,4,6. The reordered matrix is shown

103




There are a number of matrix rcducibility algorithes [25,113; G-6,-1,,-11,
«20,-29; which detcrmine if a giver matrix is reducible, and, if it is, to
specify the permutation P such that B = PTAP = (Bij) is Block Lower
Triangular (BLT) with each Bii irreducible. In terms of the directed graph,

this means finding the strong components of the directed graph [G-6].

There are a number of other uses of the directed graph, such as finding
all subgraphs with some desirable feature, determining clustering (71}, or finding

almnst BLT orderings ,52; G-20].

So far as this author knows, there is no chearacterization of the class
of G' graphs which is independent of a preassigned diagonal pivot sequence.
Rose has indicated in discussions with the author and his colleagues that the
directed graph case is much more difficult to systematize than the corresponding

undirected case. Some general considerations of operations on directed graphs

ie contained in [25].

Bt BRI e v o perain 2 bt

)
h.
Bt L P9 2 b R B T AP et A3 D ETENP YT VY]

3
;
b

1]

s PR

\‘A‘kg

AR ol IR L e B B Ko KL A e R B Y

* o Dida Do




”

BA e o

DR EL

AT A

QENEHA T §- 6D

DA A S e o

The rost general case is & sparse matrix in which the diagonal plays no

*
particular or special role and where the matrix can even be of order mxn with

mén., Then there is associated with As a bipartite graph with r row vertices

and n column vertices. There is a edge counnecting row vertex 1 with column

vertex } provided aii# 0 [5-29]. .This graph has no restriction on ordering of

rows and columns, and can be used to study the fill in the case of arbitrary
pivot order,

Graph theory has important conceptual advantages, but it has a number of

shortcomings relative to automatic digital computation, Only humans "see" a

*
graph as a whole and as parts, and can identify patterns vwhen the structure

of the grapk 1s below some threshold of complexity. Speculation as to what

further algorithmic breakthroughs can be attained from graph theory insights

is beyond the scope of this paper.

*
That is, there has not been an assignment of unkr-ms to equations, where
equaticn 1 is associated with unknown 1 and &ii* 0.

Kk
At least for the "unintelligent” information processing systems which are

available at present,
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9. PARTITIONING

*

There are a variety of recasons why matrices are partitioned. One of
the early rcasons had to do with segmenting problems so that the subproblems
could be successively solved within the limitations of the existing memories.

This had the advantage ot kecping the analysis in the form of matrix equations

and was an aid to the problem poser. With the advent of modern automatic

memory hierarchies and cxcellent vector-oriented sparse matrix algorithms,

other methods of segmenting are available in an automatic form which do not

require clever insight on the part of the problem poser.

The Successive Over Felaxation (SOR) method was shown to be valid for

certain classes of sparse block matrices [1], Block iterative methods have

been extensively developed [e.g., 18,26,101],
techniques for partitioning an undirected graph associated with SYP matrices

into a small number of trees, The diagonal blocks will be TDL matrices, and

a Block SCR iteration is applied to the partitioned system of equations.

In some cases there is a natural partitioning imposed by the phvsical nature p

of the problem, Here the partitioning may b2 completeiy regular, and the

elements of A are, say, 6x6 matrices.

algorithms given earlier can be generalized t¢ include block diaponal pivotin

In fact, one could write highly efficient 6x6 matrix algebra subroutines.

tarre [G~21] discusses computational

1f the matrix is SYP or DID, then the

- R TV, <.
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*
That is, the elements of the matrix are, themselves, matrices.

*k
It defeats the purpose of this approach if one has to deal with necatrivial
sparseness for the 6x6's themsclves.
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Partitioning also plavs a role in the analysis of the fill associated

with several stages of Gaunscian elimination. Let A be the following 2x2

, partitioned matrix where All is a kxk nonsingular matxix [46, p.130]

k n-k
A t\, ] 4

A~ 11 12
L"u l A22J -k

Then, Ax=b can be written in the {orm

A%, 4 = b

1n*1 ¥ Apx,
A

l’
» b,

21%1 * Ap% ™ By

22401 s AN SRS e oSS Ll b - ik
POAFIVNL LN TN I B NUNE D L am AL Sk £ u8 b rtar T s A I ket A e R s BT 1T o)

. . e o a1 a1,
Solving for x1 in the first equation yields xl All bl All Alzxz. This

DIV

s

result is substituted into tha second equation, and one cbtains the reduced

s X

equation Aézx2 o bi where

PR RS ETN

A
1 = -
Alyy = Ayy = Anjhyy Apy ¢.1
and :

~1
' = -
b2 b2 AZlAll b1 9.2)

Let S1 and 82 be two kxk nonsingular matrices and let ;
. S1 I 0 L1 ' Ay §, 0 ;
o T 1) fa, |a,l Lo | 1 ;

e vw |
11 12 .
\_‘51'“22_'
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Then Bll - 51“1152’ B12 = SlA12’ 321 - AZLSZ’ and B22 - A22. Moreover,

-1
! = -
P22 = Pap PPy P2
= Ay By, (51A015))  S1Ap,

- _1 LY -4 '
22 P18y Mot Ay -

The invariance of the Block Gaussian Reduction (BGR) forwmula under linear
transformations of the first kK rows and columns of A has a number of
important consequences. For one thing, it shows that the resulting reduced
matrix Aéz does not depend* on the details of how FIN (All)is obtained. Thus,
for example, one can apply Gaussian elimination to A, but restrict the choice
of tne first k pivots to the first k rows and columns. This also shows
that there is a kind of local "continuity" of orderings of rows and columns

th

wvhich lead to a2 sparse € {i.e., the composite L\U matrix). If at the m

raduction stage, a(m-l)

o is not suitable as a pivot, then it is necessary to

disturb the natural sequence of pivot positions., Assume that this disturbdance
can be ifimited to a few reduction stages, say m, ml, ....,k, and that the
pivets aig), m<u<k, satisfy m<i,j<k. The oniy portior of the matrix C, which

is affected by the PFS strategy for m<p<k, is shown as the shaded region in the

figure below,

not affested—————ode

7‘{: ;7///////,,/:,' : pivo;\choices for
/ n<usk
L / not

/‘ affected
7

e,
Y/

rn ok
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To within rouvndoif error, of course,
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There are other reasons why the 2x2 block matrix approach is useful., For
one thing, the successive (lover right hand corner) reduced matrices tend to
be progressively more dense. Jennings [49] has an interesting discussion of
the overhead associated with nonband sparse versus full algorithms, If this
overhecad must be palid for each solution vector, then there is a threshold of
density where it no longer pays to use a sparse matrix method. Thus for each
sparse matrix A there is 2 k<n such that the (n-k)x(n-k) matrix Aéz should

be considered full, This applies also to a priori ordering to preserve

*
sparseness algorithms.

The matrices All’AIZ‘AZI may have special properties which make it desirable
to have the first k pivots confined to All‘ 1f only the elcments of A22, in

the lower right hand corner of A, vary from case to case then the matrix

-1 e aT
A21A11 A12 is constant, and it can be precomputed and saved., 1I1f All All and
A, =+ A7, then (A1) = (A, =Ap AT &) = A0 ¥ ALATIA , = A}, provided

T
)

matrix A, then it is deeirable, if possible, %o limit the complex elements to

= A22. When real and complex matrix elements are both involved in the

the matrix A22' Of course, here A 13 assumed to be irreducible.

Suppose A = B -gl where, either B 1is real and s 1is a complex scalar
or B 1is a constant matrix and s variee from case to case. Then every row
and every column of A contains an s-dependent element. Half of the factor-
ization can be made independent of s by ordering either the rows or the
columns (but not both) of A backward (i.e., n,n-1,...,1). This places the
s-dependence on the -antidiagonal, This fact is more a curiosity than the basis
of a practical method, since stable pivoting** is & necesgsary aspect of any

practical method.

Cuatavsen cbserved this In sworking with Lis oidering program OPTORD [G-46].

%

By stable pivoting is meant the ability to achieve desired accuracy in the selu~
tion vith a reasonable floating point precision together with a small number of
ITerative Refincment (ITR) steps [64,66].
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10, ERROR ANALYSIS

A sketch of general error analysis relative to computational lineur
algebra is presented below as a prelude to some aspects of error analysis
which are peculiar to sparse matrix problems. The case of direct methods for
disorderly sparsce matrices which are neither diagonally dominant nor positive
definite symmetric is of especial importance. It is beyond the scope of this
survey to present any quantitative results, and the reader should consult the
references presented in survey papers {30,50,67,110,111], the books {31,45,46,
76,105,109; E-R1], and the matrix bibliography by Householder [E-R2]. Two
conferences on errors in digital computation were sponsored by the Mathematics
Research Center, University of Wisconsin, Madison, Wisconsin in October 1964

and April 1965 [75].

The extensive and careful avolution of valid clgorithms and computer

programs in the field of computational linear algebra should serve as a guide*
for similar developments in the nonlinear areas [74, 120; E-R3). The Special
Interest Group in NUmerical Mathematics (SIGNIYM) of the Association for
Computing Machinery (ACM) has fostered interest in validation and testing of
algorithms and periodically reports results in its newsletter, which is edited

by Professor Cleve Moler, University of Michigan.

The modern evolution of matrix error analysis begins with the appearance
in the late 1940's of the classic papers of von Neumann and Goldstine [69]
and Turing [99). At first, error analysis was limited to 2 study of fixed

*k
point arithmetic algorithms, Fixed point arithmetic has a distinct advantage

*
The Handbook Series Linear Algebra in Numerische Mathermatik are a notable scries
of this type.

All numbers and operations on numbers are scaled such that they lie in the
" range -le<x<l,

110




|

- s S FRANNe Boww Ny

over normalized floating point arithmetic in regard to signed addition and
subtraction. Severe numerical cancellation shows up in the form of leading
zeros. However, significance can be lost in {ixed point multiplication of two

small numbers unless the product is scaled in an appropriate manner.

There has been a strong mipration to alporithms based on floating point
arithmetic., These relieve the user, to some extent,* of the task of analyzing
the size of all intermediate calculations. With the advent of automatic floating
point hardware in the mid-fifties, one no longer paid a factor cf up to ten in time

over fixed point arithmetic,

1n the late 1950's, Wilkinson — [107-111; E-R1} laid the foundations for
"backward" floating point error analysis. Wilkinson [109, p.33] credits the
origin of backward error analysis to the papers [69,99] and more explicitly
to Givens [37]. 1In backward error analysis one establishes thcot, in the
computational procedure for solving Ax=b for x given the matrix A and the
vector b , one is actually calculating the exact solution to a slightly

perturbed problem. That is, if X, i. the calculated solution, then X, satisfies
(A + 6A)xc = b + éb

where bounds are specified on the norms [46, p.37] of 6A and &b.

Volume 7, number 4 (December 1970) of the SIAM Journal on Numerical Analysis
is a special issue honoring Professor Alston S. Householder on his sixty-fifth
birthday. In the preface to this issue, Varga states that Householder's early

systematic use of norms ir numerical analysis profoundly affected later

*

Certainly not of the problem of severe numerical cancellation.
*k

See E-R2 for a nore completc sct of references.
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developments in the field, and his periodic Gatlinburg (Tenn.) Conferences
provided enormous stimulation, It was a lecture by lousecholder in the spring
of 1953 at Georgia Institute of Technology that convinced the author of the

present survey paper that numerical analysis is an important and challenging

ficld of specialization.

In the case where A 1is a matrix of a special form, e.g., symmetric or
sparse, then the perturbation S8A should preserve this form. In fact, in
®
the field of ill-posed problems [55], deliberate perturbations are sometimes

imposed so that the solution will be unique and satisfy auxiliary conditions.

With the perturbation approach to error analysis, this analysis is
separated into two aspects: EAB (Error Analysis, Backward) and EAS (Error
Analysis, Sensitivity), The latter concerns hcw much the "exact" solution is
altered by perturbations in the input numbers., Babuska has introduced the concept
of '"maximally stable" algorithms [2,3] where one tries to minimize** the
uncertainty in the answer which is due to the algorithm and to the finite
precision of the arithmetic. Of course, the uncertainty in the answer which is
due to the physical uncertainty in the input data is another matter, and cannot

be resolved by the algorithm, This point is made by Lanczos [53, p.l4S].

The mathematical cornerstone of sensitivity estimetes is the condition

number of a matrix [31, p.20; 105, p.88; 110],

cond(A) = jlal[]]a7Y] > 1.

*
A better terminology would be "incompletely posed" problems. These arise in
certain modeling questions where one knows answers and seeks the model.

1)
Vithin the context of a reasonable degree of Iloating point precision and
computational complexity.
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I1f onec uses the Luclidean norm,

2 2
AL = 5 Ja,l2,
i,]
then cond(A) = ul/un where Mysk, are the largest and smallest singular values

of A, respectively (4; 31, p.5; 38].

The condition number of a matrix 1s effected by scaling, and Bauer [5,6)
has pointed out that a major aspect of scaling has to do ;ith the effectiveness
of PFS strategies. Unfortunately optimal scaling is rarely achievable in
practical problem solving [15}, and may, in some cases, conflict with physically
meaningful scaling.* A recent series of papers by van der Sluis [88-90]

represent a major contribution to this field.

When experieunced numerical analysts are faced with an unacceptable degree
of sensitivity to input perturbations in a practical problem solving context,
the standard practice is to check with the problem modeler to see if the
ill-conditioning is due to poor problem formulation. In many cases this is

the cause, and a reformulation removes the difficulty.

- In some cases, the ill-conditioning is unavoidable and then the method
of iTerative Refinement (ITR) [64,66] is the main tool. Of course, sufficient
accuracy must be achieved in the factcrization stage to enable ITR to converge.
Wilkinson recommends ITR in any case as a means of providing a degree of

assurance of the accuracy of the solution.

The INverse Iteration (INI) method [100; E-R1l, pp.319-333] requires PFS stra-

tegies and this normally means not preserving syrmetry in the factorization [£-8,-25].

*
See Givens® remarks {112,p.166 (SMY-19)1],
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The mixing of scalar diagonal pivoting with 2x2 block diagonal pivoting can
be used to prescrve symmetry and, at the same time, provides a stable pivoting

strategy for symmetric indefinite rmatrices [13,14].

At times it is possible to take advantage of th: symbolic form of the

matrix clements to avoid numerical cancellation in the factorization stage.

The Nodal Admittance Matrix (NAM) [11], which arises in the analysis of electrical

networks, has this character. NAM's are a special case of a more general class
of M-matrices [101, p.85] which satisfy the following conditions: (1) A 1is a
real nxn matrix, (2) aj5 < 0 for i#j, (3) A 1is nonsingular, and (4) A-ll 0
(i.e., all elements are non-negative). In a number of applications including
NAM's and Cost Model Matrices (CMM's)[70] the diagonal elements are expressed
as a sum which includes the sum of the absolute valucs of the off-diagonal

elements in the same colurm (or row),

a )

om ~ i¥m Iaiml+|an+1,m l

where al.m < 0. This summation property guarantees that the matrix A is
H]
*
diagonally dominant. If, in addition, A 1s {irreducible and & Hlm <0 for
?
at least one m such that l<m<n, then A is nonsingular and AL 0.

It is interesting to note that, while diagonal pivoting is considered
stable for the case of diagonally dominant matrices, the calculation of the
pivot elements £mm, in this case, by the usual formula

m-1

2o=ag - {l 20 Y (10.1)

j-

*
That is, cannot be reordered to be Bloui: Lower Triangular (BLT), The questirn
of reducibility will be discussed later in this section.

11k
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involves exact symbolic cancellation as shown by the following 2x2 example,

a +e ~b
A= a,b > 0, ch << a .
-a b

. b b
If A = LU then £,y = ate, 221= =3, U, " - o 222 w b ~(~ a+u)(~a) =b -

ate
b(ate) -ab _ _be
ate ate

= . The inherent accuracy in the small number € can be

lost in forming the sum ate so that £22 can have a high relative error. This

type of cancellation was brought to the author's attention by Calahaa {ié,pp.30-32;17].
Many engineers have developed circuit motivated techniques for avoiding cancella-

tion based, for example, on the use of the "star-mesh'" transformation [81] or

of the indefinite admittance matrix [86,87]. A method based on a zero sum

*
augmented matrix was presented by the author at the Oxford Sparse ! trix

Conference [SMO-17}. This method which is presented below is merely a slight
A

variation of a technique reported earlier by Bingham [9]. Let A' = T where
-e A

eT = (1,1,...,1). A' has zero column sums and this property remains invariant

*%
under Gaussian reduction. If A = LU then

-e A ~eTL

The zero column sum property of the augmented L matrix provides the following

cancellation free formula for !.m as an alternate to (10.1),

n+l

g = ¥ |2 . (10.2)
TR el km

*
This is the indefinite admittunce :atrix in nodal analysis.

*k
Rotr and/or colurn sums are uscd in Jesk calculaticns as error and/or blundor

checks.
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In the formula for ﬁnm’ use is made of the propertiecs zij, uji < 0 for j#i.
1f the alternate formula is used for calculating lmm then there is no numerical

cancellation in forming all of 1. and U for this class of M-matrices. This

th T
corponent of ~e A is an+1’m,

which is an input number, and tht diagonal eclements of L are formed rather

also applies to the SUDL stage if b>0, The m

than the diagonal elements of A.

The following theorem for the class of matrices which are strictly diagonally

dominant M-matrices (that is, a < 0 for l<m<n) forms the motivation for a

n+l,m
Matrix Reducibility Aligorithm (MRA) [113].

Theoren. A-l > 0 if and only if L and ot (U transpose) each have their last
column as their unique singleton column (i.,e., a column with exactly one nonzero

element).

1

For this class of matrices, A ~ > 0 if and oaly 1f A 1is irreducible. Thus

by forming SSI(C), where C 1s the composite L\U imatrix, one has a test for
reducibility., Suppose A 1s reducible, then there exists a permuation matrix, P,

such that B = PTAP is BLT. The square diagonal blocks, B, ,, will be irreducible.

kk
> 0 as its diagonal blocks. The follow-

Moreover, Bm1 is also BLT, and has B

kk
ing condition characterizes the indices 41,j such that a, and ajj belong in
the same irreducible diagonal block of B,
I I -1 1

Reducibility of a matrix is a purely logical question which depends only
on whether elements are zero or not zero., The proposed *RA, though motivated

by ideas relating to strictly diagonally dominant M-ratrices, requires only
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the condition, aﬂm# 0 for l<m<n. In many applications, this condition is

already satisfied, If it is not, then one first applies to A an assignment

Algorithm [G-27) which 1s a special part of the general field of network flows
:’, [27]0

The various Symbolic Factorizations Programs (SFP's) which generate SSI(C)

from SSI(A) can be extended to include both row and column symbolic forward

e R~ W

: and backward SUB, In this way, SSI can be obtainad for rew 1 and column 1 of
: A-l, and this information determines the set of indices which belong in the
? game irreducible diagonal block of B,

The following properties are numerically

*
true for strictly diagonally dominant M-matrices and "logically true" for

matrices A such that a ¥ 0 for l<m<n,

NN

3 I

a,, $0 > ¢, ¥$0 » a, $0)

] 4 13 13 (10.4)
b 0 > y 40 S x 40

there Ly = b and Ux = y ({.e., A = LU and Ax = b).

Since C 1is at least as full as A, the first 8x8 matrix on the following
page is irreducible by inspection since there is a nonzero in row m to the right

of the diagonal and a nonzero in column m below the diagonal for 1<m<7. The

Y
S

*k
second 8x8 is also irreducible by inspection of SSI(C).

AR e

*
That is, in the Boolean sense and ignoring creation of zero by exact
cancellation for a particular matrix A.

numeri.al
3 ki

: The symbol § is used to represent a,,= 0, ¢, ¥ 0.
{: i) ij
%
IA
¥
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! Trivial reducibility can be rermoved from A as a preliminary operation,

Yr g

> For example, all rows and columms of A associated with singletons can be

s

a priori struck out of A and ordered directly into the BLT matrix B. Also,

the sparseness structure of certain elements of the various matrices and

g
iy b

vectors are either known a priori or are irrelevant to subsequent calculations.
For example, (10.4) provides a priovi information, and, if an irreducible block
has been found, the sparseness structure information associated with the indices
in the block is irrelevant to the determination of subsequent irreducible blocks.
Thus index skip lists can be generated during the algorithm and utilized to

bypass unnecessary operations,

AN
¥
B
N
e d et b e e af LD el s AL DR IARL e § an S B AL © aterve T cev Ul hee R Roban et e i (3 2 e Lo sn e Tt san B et R

A The 8x8 reducible matrix, A, shown on the next page, illustrates a number

?j of aspects of the proposed MRA, A permutation, o, of (1,2,3,4,5,6,7,8) is deter-

; mined such that B is BLT and row (colum) i of B is row (column) o, of A. 3
E Search for singletons provides o, = 5, 0g = 4, and o, = 1. These provide 1lxl g
E diagonal blocks in B, and now the indices 5,4,1 are irrelevant. The matrix C %
} is formed,* and A is found to be still reducible because c¢,, = 0. The relevant

87

I a§2 ¥ 0 if and only if

23 °
je{2,6,8}. The indices {3,7} form a 2x2 block which must follow {2,6,8}. Thus

part of row and column 2 of A-l is determined, and a

iEine Nt

_——

o, -2, 0326, 0, =8, 0, =3, 0= 7; thatis, o = (5;2,6,8;3,7;1;54).

o

ol LA s o

b4 K

*
The symbol § in C means value is firrclevant.

YR, AR T AR € * 3 T
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5.

MATRIX RED: CLBILITY ALCORITHM (MEA)

Given SSI(A) gencrate SSI(L) via a SFP.

Check column counts in L and row counts in U {or reducibility
(theorem p, 10.7).

If A 1is reducible, find irreducible blocks of B via repeated use of
(10.3). The set S = {1,2,...,n} is partitioned into equivalence classes
R=(R, P,, ...,R ] of indices belonging to the same irreducible
diagonal block of Py.

Lefine pxp Boolean matrix M =(m_ ), where m = 1 if and only if for
some icR  and some j R , a # 09V M 1s reorldéred to achieve a lower
triangulgr form by succdssive symbolic Gaussian reduction, using at each
step as pivot the uniqgue nonzero element in a singleton rew,

The reordering permutation for M, together with the pa~tition R, deter-
mine a permutation matrix P such that B = PIAP {s BL: and the square
diagonal blocks Bkk are irreducible for 1<k<p,

Instead of solving Ax=b, one solves Bz=g where z = PTx and g = PTb. Only

the diagonal blocks are factored, and 2z 1is determined via block forward SUB.

1 4

2 veu Sysbolic
ractorization
-\‘\‘ ¢ C1 A - LU
g

no
]
Assignment L Columa Counts --}
Calculetion U Rov Counts i
Biproduct in & |
—— 1
v ‘&]
9 Ll u
. Block Lover Find
OPAORD( ; Triangular Irraducible
B0 14 1 1ordering : Blocks
‘ |
! i
| {
| |
h 10 : !
) |
Sysvolic T = Nurber of
Yacrorization L_ b« PAP L-« Px:ndueibh
5, " x,“u“ 3.L.T. dlocks
1343
L 11

TLOW CHART
KATRIX XEDUCIBILITY ALCORITHM

$noclal SOLVE
Progean for

xvah
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The fcllowing 3x3 cxample shows why it can be dangerous, from am zccuracy

point of view, te pivot outside the irred cible blocks. Let £ = 2at+l whexe

a>1l.
-{ -a a {0 ¢ a—l
A=]-a 1 0 T R T
) -
a 0 Qj l a” 1 h 1 .
Note that 222 = o hiie go= ala/f), aund 133 =g ~glg/ (1) ] = [a/{at])]" = h.
Maximum pivoting was used in each step, bur 2., is ¢f the form ® -« ag

33

a ++ =, Let c(A) = condition number of A E!]AII-]!A"13|

1 then cfA)>2a, since
||A]|> spectral radius of A » 2a, and lIA-llii_l. liowever, if the matrix A
is scaled by dividing the first row and first column by a, then the resulting

condition number is less than 9 for all a > 1. The (1,1) element is now

a(2a+l)/a2, which is clearly . poor pivot choice for a>>l.

Congider now a BLT matrix, B = (Bi‘)' where the diagonel blocks, Bii’ are
S

irreducible and nonsingular. One can independently scale the diagonal blecks Bi

to achieve an optimum condition numbzr for that block., In addition, let
D = block diagonal matrix = diag. (511,5212,...,enln) where O<e<l and Ii is the

identity matrix having the same ordexr as B IfT= DBI)'"1 - (Tij) then

i’
-1 peln-l Ll « i S | o 1
T DB "D (Tij) and Tii Bii” Tyg Tii‘ Tij £ Bi}’ and
Tij = ci-j Bij for 1<j<i<n. 1lhus optimal scaling demands that pivoting be

restricted to the irreducible diagonal biocks,

It is important to reaiize that the number zerao in matrix calculations is

qualitatively different from a nurber which ray, in a given context, be
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negligibly small, ¢, say. The number zero is invarviant under scaling of rows

: and columns, whercas ¢ certainly s not, c.g., € ° c_l =1,

*
Numerical analysts creatc patholcgical examples as a caution to the unwary.
A well-known example of a qualitative difference between € and 0 1s exhibited

in the eflgenvalue-eigenvector 1nalysis of the following nxn natrix.

A T R AR T R ST TR 5
®
-}

1f o = 9 then AG ie in Jordan canonical form [45, pp.34-37]}, A = 0 ir the only

AN

eigenvalue, and x = e, (= first ceclumn of the identity matrix) is the normalized
eigenvectcr (otherwise there are cnly principal vectors {45, p.32]). On the

other hand, if, for example, « = 10~n’ then there are n distinct eigenvalues

hy o= wt 107", 1<i<n, where w = e . primitive a™® root of unity, and

6 = 2n/n. All these eigenvalues have moduius 10-1. I€ n=2G, for example, then

SRMET g Soa

a = 10-20.

In sparse matrix problems, s = 0 typically means "x, does not occur in

J
in equation i is negligibly small."

equation 1" rather than "the effect of x

3

Casting out {nsignificant terrs in problem nodeling has been the domain of the

*
Kalian [50] and Wilkinson [i07, 108) are experts in this area.
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b/ applied mathematician. However, in the recalm of nonlincar evolutionary problem
*
modeling, this "casting out" is being replaced by "putting in and see what

happens."”

. There has noc, in general, been any particular cmphasis on error analysis in
the various specialized sparsc matrix applications areas. Rosanoff  and Shaw [85]
q have analyzed the question of conditioning in Structural Mechanics, and Fox

and Stanton [33) stress the importance of scaling to minimize the eigenvalue

. spread in applying a COM in cases where A 1is SYP. Finally, Wolfe (75, Vol. 2,

H
-
1

i

5
:

3
(I

pPp.271-281] discusses the qucstion of error analysis in the linear programming

field, Linear programming represents an area requiring the most general approach

to sparse matrix calculations,

PFS has been 2 critical aspect of algorithms for matrices which are neitner
SYP nor DID. The computational price one pays for this in dealing with full
or band matrices is reasonable, but where the sparseness structure is arbitrary
this is not necessarily the case., Care must also be exercised in choosing
pivots which pres~tve sparseness, Clearly, zeros cannot and near-zeros should

*xk
not be used as pivots, - . least some threshold criterion is necessary.

- As far ss the author is aware, there does not yet exist in the literature
a systematic analysis of the accuracy achievable**** in the factorization stage
g using some form of threshold pivoting. Of course, it 18 always desirable to
use extended precision inner product accumulation, and this may be crucial in

the case of threshold pivoting.

*
“ 3 This marks a move towards large scale scientific calculations,

*
Structurai Mechunics Conference, Flight Dynamice Lzb cauCr, Wright-Patterson
Afir Force Base, Ohio (October 196¢&).

Kk
[ . That is, llﬂnlg_n where o is some absolute or relative threshold.
' Rk g

In the context of a priori specified precision in the floating point arithretic.

Ty il &
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11. COMPUTATIONAL COMPLEXITY AND EFFICIENCY

The wi.ole question of computationai complexity and of efficiency of

i numerical methods is just beginning to reccive the attention it deserves in the

ficld of practical problem solving. The maximum size of matrix problems attempted

has always been at the limit of the capacity of information processing systems, -
In order to enhance the evolution towards solving larger problems, there needs

to be developed a detailed understanding of how the computational feasibility

and efficiency depends on the problem formulation, the algorithm, and the

architecture of the computer hardware and system sof tware.

Efficiency is measured in terms of Cost/Performance (C/P). Both cost and
performance are hard qualities to quantize., In its brcadest sense, efficiency
is8 the measurement of the human and computer factors involved from the time
a problem is first conceived until results are available in a form suitable
for the user's ultimate need. Here the chargeable CPU*time may be completely
negligible, especially if no production code is available for the calculation,
In the narrowest sense, one is measuring the throughput in the CPU for
important inner loop calculations. Even this is poorly specified if one is

operating in a time-sharing or multiprocessing mode.

Consider the question of efficiency in solving Ax=b for x given the
vector b and the sparse nxn matrix A. There are undoubtedly eritical cross-
over points and elbows on efficiency versus n plots, but meaningful plots of
thia type are hard to obtain for nontrivial situations, and these plots nave to
be viewed in the larger C/P environment of the total problem being considered.

Moreover, the efficiency should be averaged over some spectrum of computer runs

*
Central Processing Unit, that is, the arithmetic and pruzr.:. centrel registers
as distinct from memory.
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in a realistic operating environment.

wolfe [112, pp.107-112; SMY-12] has given an excellent indication of the
evolution of computing power in the field of linear programming. The first
graph shows the size of the largest problem users reported solving at various
periods in time., It is interesting to note that, at the time* of the symposium,
10,000 cquations secmed to be the production frontier in both linear programming
and in structural mechanics. The character of the sparse matrix problems &nd
the algorithms are vastly different in the two fields. The second graph shows
an equally important type of evolution; namely, the decrease in running time

for a rodel problem as both the computer system and the algorithm evolved,

We need more graphs of both types for a spectrum of applications, and also
detailed timing charts for certain large-scale calculations which are at the

frontier of capability of current systems,

A measure of computational complexity in linear algebra has typically been
the number of multiplications involved. This has been reasonable with regard
to floating point operations since multiply~add is the basic operation except
for the calculation of n reciprocals p, = 1/!,ii for 1l<i<n. Recent work
[12,32,44,51,94,114,115] has addressed the question of minimizing the number
of multiplications in numerical calculations. These, of course, do not
necessarily cover the question of computational complexity in disorderly
sparse matrix problems. For sparse matrix calculations, there is, in addition
to the complexity of the floating point processing, the logical manipulation
of sparseness structure information as well as the questions concerning access

to information in a memory hierarchy and under a variety of operating conditions.

*
Septenber 1968.

126




P T Fx Agreg A e s, 6 e GO e e By o R P wngatag iz w QAR
T i TR Wm“‘&@nb- PR J-a AN «.3\.71'59#«.;’2"4‘5?3&‘&&1"&@“53&'3??‘} BT R AT TIRE G0, L g A 3
PR A ER S G TR L s Mo oyt Sl e e L ek e T S :

The whole question of computational complexity is becoming increasingly fuzzy

because of the advent of sophisticated operating systems, virtual memories [F—44]*
and parallel f123), pipeline [F-47] and array procegsors [F-25]. Multiprocessing,
especially in a time-sharing environment [F-35] also increases the difficulty of
accessing computational complexity and efficiency. The relationships between

sparse matrix calculations and computer systems will be discussed further in

sections 12 and 13.

*
That is, automatic data management in a memory hierarchy environment,
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12, MEMORY HIERARCHIES AND DATA MANAGEMENT

Access to information, both data and code, is an important aspect of :
computational complexity and efficiency. Some problems are CPU bound, but ;

others are memory bound., The latter seems to be a critical bottleneck in 2

ROTT

certain large scale dircct sparse matrix calculations, and has been a strong
argument favoring iterative methods. However, as problems become more

irregular, many iterative methods become ineffective because of a degraded rate

PR TV VO

of convergence [104; 112,pp.139-148; SMY-16]. There needs to be a continual

assessment of the relative tradeoffs between direct and iterative techniques

U S I )

as the problem classes, the algorithms, and the computing systems evolve, H

Highly sophisticated memory hierarchy systems are appearing, and the aim

of these systems is to make the functioning of the hierarchy tr parent ¢

(i.e., be of no concern) to the user by means of automatic memory management
[F-44,-45). Some reasonable rules relative to ordering must be followed i
[68; F-39] if efficiency is to be achieved in matrix computations. Basically,

the main ideas are: (1) When blocks of information are moved up in the hierarchy

they should have a utilization which is directly related to the size of the

block; (2) Where information resides in the hierarchy should be related to

the effect of its access on the overall efficiency of the processing.

Efficient I1/0 and memory management are two of the most critical problems
in the design of large scale production codes. The resclution of these
problems often dictates the level of generality which can be tolerated in the :
code without seriously degrading the computational efficiency in the typical ;

*
production runs,

*
Having too many special purpose codes, on the ofther hand, tends to create a
high level of human inefficiency.
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Sparse matrix problems have a number of special characteristics. For one
thing, there are long chains of streaming and merging in these calculations

which are well suited to multiple memory pipelining. Some information is used

repeatedly such as the rows of the U matrix in the FIN stage of Gaussian
elinination, whereas, in cach pass through the SUB stage, the rows of L and

of U are used exactly once.

Let A be a band matrix such that a . ¥ 0 for |i-j| < k where k<<n, bu

3
otherwise aija 0. Also assume that pivoting can proceed down the diagonal

in the natural order (PDN). This class of matrices are ideal from a sparse
matrix point of view, In the factorization stage there is a Template of Active

Storage (TA3) required to form the mCh column of L and the mth row of U,

This TAS is the shaded area in the diagram below,

(n-k,m)

(j"k,J)

N\

‘m,3) (m,mtk)

)

(1,m)

(m,m-k)

(1,1-k)

(mtk,x)

*
0f course, all indices are also greater than or equal to one and less than
equal to n. There are at most k2 + 3k + 1 locations involved in this TAS.

This is a moving template which progresses as m increases from one to n.

*
There are schemes which augment the diagonals with zeros at the beginning
and/or the end to avoid special cases for the terminal indices.
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This local active store also applies to the x and y vectors in

the SUB stage, and again is a desirable feature in memory situations
which are not random access. It is partly for these reasons that a number

*
of authors have developed bandwidth minimization algorithms [G-15,-35,-38,-42].

For the general sparse matrix and the RGE algorithm, the active storage
requirements can be very chaotic, both with and without PFS. In the first place,
the storage needed for the nonzero elements in A 18, in general, not adequate
for the storage of the nonzero elements of C because of the £1ill occurring

in C. 1If only diagonal pivoting in the natural order is involved, then an
upper bound for the number of nonzeros in C ie obtained from the BLD

approach to fill. If PFS is involved, the estimations of active and total
storage requirements for C are much more difficult to obtain.** 0f course,

one can deal with upper and/or lower semi-bandwidths in this estimation,

but this approach may bz too gross.

One approach to Gaussian reduction is to process all remaining rows with
the pivot row and thereby obtain a reduced matrix which has an order of one
less than the matrix being reduced. In fact, this approach was used in the
early Gauss-Jordan complete elimination algorithmg [F-1]). Here, the active
storage remaing at somewhat more than n2, since the entire matrix is updated
at each stage. After n stages, one has either Al ora permutation of At

in place of A. One kas the widest choice of pivot strategies if this

approach to Gaussian reductions is used.

A quite differeat approach can be taken in processing the rows of A in

the RGE algorithm. The rows of A are first stored compactly in serial backup

m -
See also Tewarson's survey article on sparse matrix methods [96].

*k
The author acknowledges informative discussions with colleagues, A. Blaser and

H. Pretsch, at IBM Germany who are investigating memory estimation techniques
for general sparse matrices wherce PFS is involved.
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store. At the mth reduction stage, one processes the m h row of A against

rows 1,2,...,0~1 of U, and obtains then the mth row of U. Some subset of

the first m rows of U are needed in compact form in active storage for

processing row wtl of A,

1f PFS is not involved and one is going to solve a number of cases where

SSI(A) is fixed, then SSI(C) can be obtained a priori, and the moving TAS can

be constructed. Moreover, reordering schemes can be applied which are aimed

at making the maximum size of the template reagsonable. This can be especially

important in large-scale calculations which are memory bound.

There are, of course, a number of other tradeoffs in a priori ordering

strategies such as achieving: (1) minimum operation count in forming C;

(2) sparsest C; and (3) systematic sparseness structures (e.g., band, triangular,

block triangular, or structures which are "near" these in some sense). The

effectiveness of these strategies is sensitive to the problem class, the
computing system, the dynamic operating conditions when a problem is being

run, and, of course, the excellence of the programming.

Repeated restarts of slow serial backup stores, such as magnetic tapes,

can be a limiting factor for the size sparse matrix problems which are feasibla

in a production computation environment. Large core store, high speed discs

and drums help extend the size of feasible problems. On the ocher hand, operating

systems, problem criented supervisors, and dynamic storage programs may eat up

in overhead a large portion of the added memory power. If substantial overlays

of code and/or data are required in the inner loops of a large-scale calculation,

the effective rate of computation can be considerably degraded.

*
See Part G in the bibliography and [96] for detailed references.
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13. COOMPUTER ARCHITECTURE AND PROGRAMMING

There is no question that many classes of sparse matrix calculations could
be enhanced by specisl purpose hardware such a3 parallel, pipeline, and array
processors. Also important algorithms could be microcoded*to improve the
throughput, However, the C/P figures for these special aids to a small class
of users may cause them to be unfeasible, except for critical real time appli-

cations where cost is not a primary criterion.

Parallelism has many forms. For example, one can either have a single
instruction stream with vector processing in parallel, or several instruction
streams with a number of arithmetic registers. In pipeline processing, one
segments the operation "multiply-add," say, into a number of successive but
separate steps. As soon as one step is completed in the sequern.e, new operands
can be processed in a pipeline mode, If the pipeline is long, data~dependent
branches which drastically intervupt the flow arc to be avoided whenever possible.

Memory pipelining has already been mentioned in the previcus section.

It 1s very difficult to predict the evolution of information processing
systems, but some general remarks seem appropriate. First of all. multiprocessing
has become 8 standard approach in largo-scale systems. Moreover, there will
be a continuing evolution towards more powerful general purpose computers which
satisfy the needs of information and data processing, as well as the small
market for large scale scientific calculations. As indicated in the last
section, one of the important developments will be automatic memory management
which will be coupled with simple user rules for structuring and segmenting code

and data.

*
Wilkes, M. V., "The growth of interest in microprogramming: a literature survey,"
Comput., Surveys 1 (1969) 139-145.
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Terminal oriented computation with an interactive graphic facility,*
will have stcadily improved C/P characteristics, However, in order to be
feasible at the individual user level, there must be a drastic reduction
in the current C/P figure for interactive graphics. The terminals may
have stand~alone memory and computer capability, but they will also largely
be a part of a communication net of terminals and lavge-scale central computer

systems,

There are two underlying criteria involved in the evolution of ~omputer
systems; namely, (1) compatibility and (2) Improved c/P.** The first is
inpectant since then costly production ccdes are not made obsolete. Without (2)
no new general purpose system has any reason for being. Moreover, the enhanced
C/P snould be achieved in the context of high level languages such as FORTRAN,

APl and PL/1, and should not require extensive user tuning of existing programs.

The preceding remarks could be interpreted as referxing mainly to hardware
evolution, but what is hardware and what is software cam be a very vague distinc-
tion. Software enginecring is a rapidly developing discipline in the systems
programming area, and will continue to be the pioneer for hardware innovations
vwhen C/P characteristics dictate a shift from sophisticated software to efficient

hardware.

In sparse matrix problems, there are a small number of important underlying
m3-hematical ideas which must be understood and exploiced, but it is in the
applications programming, itself, that the efficiency is achieved. The
programrer rhould be asware of the computer -architecture considerations in

plarning his programs, but extensive "fine¢ tuning" may make the program subject

*

As well as hard copy cption at the grapaics tcrminal.
det

‘ Reliability and servicesbility are a part of C/P.
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to continual modification because of changes in hardware e2nd/er s'stems sof tware,
Clever programning is a fascinating game, but it must be played by reanonable
rules {f the resulting program is to be useful to a large class of problem
solvers., Basically, progrormming has two aspects: (1) flow charting, and (2)
coding, Aspect (2) should be an implementation of priow development of aspect (1)
and not vice versa., Tine tuning may be a necessity, in some cases, of important
inner loops, but these s »uld be cleurly identified in the program for easy

updating.

Ir summary then, wvhile it would be desirable to have computing systems
which are tailored to the specific needs of users, C/P characteristics dictate
that users adapt to the structure of the evolving systems. Sophisticated
scientific uscrs should take the effort to clearly identify their needs and,
where necessary, show that these needs are not being effectively satisfied by
curreat systems. In this vay, C/P studies can bz made relative to these needs so
that unnecessary bottienechs can be removed from future sysrems. The users
might start their interaction with computer architects by readi-g the story

of the planning of a large high performance computer [F-7].

It is the contention of the author and his colleagues that, if a computing
system is effective in a C/P sense for sparse matrix calculations, then ti.is

system wilil also be effective for a broad spectrum of other uses.
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. 3 14, MXEMONICS DICTIONARY AL BIBLIOGRAPHY
o A, General feimarss
i ' In writing ihis survey, the author found that he was often referring to
&5
'E certain concepts such as triangular factorization., It became convenient to
X refer to these concepts by means of mnemonics., Thus, TRiangular Factorization
3
4 is assigned the mnemonic TRE.
A
-3 In part B of this scction, a nncmonics dictionary is presentcd which serves
N
33 alse as a subject guide for the references and an index for the survey itself.
E
& The references are by no means corplete, especially in the applications
;f area. Certain references are cited in each applicacion. These either vepresent
‘:
ks a text which can serve as survey of the applicatinn or papers which concermn a
£ particular asprct of sparse matrix technology. The use of Band Like Domains in
a
i structural mechanics problems is one example of this type.
wé‘ As Houscholder has pointed out many times in his Mathematical Reviews
ii% contrivutions, there ‘s repeated discovery of known results in practical
W 3
- numerical analysis. One reason for this is the very recent acceptance cf
o algorithms as publishable in their own right, and the rather meager set of
N adequate surveys and annotated bibliographies for various practical aspects of
. Y
29
s numerical analysis.

Cross discipline symposia are an important remedy for this lefect. These

symposia should be addressed to the understanding of the underlying mathematical

modeling techniques and the current state of feasible and/or efficient

computational methods.
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Oue purpose of this survey has been te provide an cxtensive bibliography
{or £parse matrix technology. Parts E, F and G arc organized chronologically
0y subject matter as follews: E. Eigenvalues and Efgenvectors, Sparse Natrices;
F, Computer Architecture, Parallelism, Memexy Hierarchy, and Data Management;
and G. Prescerving Sparseness., Part C is an author list, and part D is a set

of general referesces, which are alphabetical by first author,

Two references E-R2, -K3 i1efer to the two volumes of Householder's extensive
bibliography of numerical linear algebra E-R2, Vnl, 1 {First) Authors A-J,
Voi. 2 Authors K-7), and one velume o references for numerical treatment of
nonlinear equations., Where known, the reference includes a citatisn concerning
where the article is revicwed {n MR (Mathematical Reviews), CR (Conputing
Reviews) , RZ (Referativyi Zurnal. Hatematika),* and ZBL (Zeatralblatt fur
Mathematik und ihre Grenzebicte).** The abbreviations for the journals are
those listed in the index issues of MR, There is also an author index and a
»olC (Key Word in Context) index., Also, each reference hzs a four-digit identi-
fication which starts at 0001 foi each volume. All told there are approximately

3500 references in the thrce volumes.

I: most cases, if a refarence in the present survsy cceurs in Householder's
bibliczraphy. the Houscholder nuxber is given together with his CR and/or MR
citation. For example, the Daniel [2Q] referense ends with RU56), CRI 13,478,
HMR36 2315. This means Hewscholder {E-%2, Vol l}*** 0363; uweoputing Reviews,

velume 9, review number 13,478; Mathematical Reviews, volumg 36, review number

*2yblished in lloscow.

%% pyblished ir Berlin.

¥k Tf E~R3 is intended, this will be denoted by K{EL)munx.

k% Sparting with volume 20 (1952), MR nusbers the xeviews stavtiang from
one each year, Tefere tlat reviows ware referred to by volume and page.

CR nurbers each review censecutively withoat starting at one cach year.
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seth in the references in this survey and in Householder's bibliography,
the title of the article or book is translated into Lnglish when the article
is in another language. The language of the article is indicated in parentheses.

In most cases, CR and MR reviews indicate 1f there arce summaries of the article

in othier languages.

137

L Laraan- e o LAt N Y




3 LA TR T R STt TR G T R . e £ B e e R s SRRV o T T ST
) G Y T e A e e R N TR I TR R i e W NEER X TR T R T T A o 5y M T T P N TR B 3, !
T ST TS

el

- — - e -y oF P SO

B, Mnemonics Dictionary

ACM Association for Computing Machinery; sce also SIGNUM; p. 10.1.
APL A Programming Language; [47]); pp. 4.3, 13.2.

BGR Block Gaussian Ruduction; sce also RGE, SYI; {13, 14, 45, 46; F-41);
pp. 6.4, 9,1-9.4, 10.5.

BIF BL-lactorization; see also ECM, EFl, ERM, SYP; [78(SMO-6)]; pp. 2.3,
3.2, 6.1,

BIM Block Itcration MMcthod; see also DID, PDE, SOK, SYP, TDL; [e.g., 1, 18,
2605 G-21}; pp. 8.3, 9.1,

; BLD Band-Like Domain; see also BMM, $SI, TDLL; ({48, 49, 58-60, 65, 78 (SMO-7),
&41; pp. 3.2, 7.2-7.3, 7.5, 8.3, 12.3, 14.1.

BLT Block Lower Triangular; sce also MRA; [25, 113; ¢-6, -10,-11,-20,-29];
pr. 4.1, 5.6, 8.5, 10.5, 10,7-10,13,

BiM Band Matrix Method; see also BLD, TDL, TDM; [e.g., 36, 63, 82, 95, 97;
E-R1,-8,-25; G~15,~35,-38,~42); pp. 7.1, 12.2-12.4,

BEM Boeclean Sparseness Matrix; see also SFP, SSI, TLP; [e.g., 40];
pp. 2.3, 7.2-7,3, 8.1-8.5.

c/P Cost Perf{ormance ratio; sce part ¥ of refercnces; pp. 11.1, 13.1-13.3.

~e

CAP Computer APplication; see also CCD, LP, MNLE, PHE, PSA, SDE, SPP, STM;
{4, 10, 11, 16, 17, 21, 24, 27, 28, 32-~35, 41, 42, 48, 49, 52-62, 65,
70-75, 78-87, 91-93, 98, 101-104, 112, 113)}; pp. 3.1-3.3; also see
particular applications.

CAR Computer ARchitecture, see also MEH, MOP, TAS; [e.g., 123; F-7,-25,-47];
?p. 4.2-4.4, 8,3-8.4, 9.1, 11,1-11.3, 12,1-12.4, 13.1-13.3,

¢Ch Computational Circuit Design; see alsc CAP, MN&M, NLE, PSA, SDE;
{e, 11, 16, 17, 41, 42, 52, 71, 72, 78 {sM0-17), 81, 83, 86, 87, 98,
112 (SMy-17), 113; G-1 through ~5,-7,~23,-26,-28,~46}1; pr. 1.1, 2.1-2.4,
3.1-3.3, 10.5-10.7; see Cornell Conference reference p. 2.1,

CGM fonjugate Gradients Method, see aisc §YP; (7, 19, 20, 24, 33-35, 43, 46,
57, 76, 78 {SMC-16), 92, 105]; pp 3.2, 9.3-6.4.

oMy Cost Madel Matrices: see ulso CAP, DID, M-MAT, N&%; [70]; p. 1C.5.
CPU Central Processing Unit; see part F cf references; pp. 11.1, 12,1, 13.1.

DID Diagongslly Dominant; see also BGR, BIM, PDN, SYP; {9, 17, 26, 54, 70, 78,
81, 83, %3, ¢85, 101, 112, 113; E-R2}; pp. 4.2, 6.1, 9.1, 10.5-10.7.

FEAB frror Analysis, 3ackward; sce also LAN, EAS, PFS, SCA: [e.g., 109};
pp. 10.2-10.3.
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EAN Error Alalysis; sec also EAB, EAS, SCA, SUR; [2-6, 9, 13-17, 30, 31, 33,
37, 38, 45, 46, 50, 67, 69, 75, 76, 85, 88-90, 99, 105, 107-111, 113;
E-RI,-R2)§ pp. 1.3, 2.2, 3.1, 4.1, 4.4, 6.4-6.5, 9.4, 10.1-10.15; see
especially [109].

EAS Error Analysis, Scnsitivity; see also LAB, LAN, PFS, SCA; for references,
see EAN; pp. 10,3-10.4.

1M Elementary Column Matrixj see alse BIF, EFL, ERM, FIN, MMM, PFI; [4, 2,
73, 78, 96, 112, 121; G-31,-431; pp. 3.2, 3.3, 4.5-4.7, 5.3 5.6, 6.1,

EFY, Elimination Form oif the Inverse; see alvo BIF, ECM, ERM, PFI, RCE, SMA,
TRF; {4, 62, 73, 78, 95, 112; G~43}; pp. 3.2, 3.3, 5.3-5.5, 6.1; sec
in particulax, SMY-1O.

ERM Elementary Row Matrix; see also B1F, EFI, FIN, MMM, PFI, RGE; {4, 62,
71.-73, 78, 83, 96, 98, 112, 116-119; G-43]; pw. 3.2, 3.3, 4.5, 5.2, 5.4,
6' 1‘

EVV Eigen-Values and ~Vectors; scc also CGM, INI, PDE, SYX, TDL, TDM;
[eog', E"Rl]; ppo 3.1, 604"6.5’ 7.4’ 904’ 10.13*10.1’6.

FEM Finite Blement Methed; sece also BLD, BMM, CGM, DID, PDE, SOR, SYP;
(33-35, 84, 112 (SMY~11)]; p. 7.5.

FIN Form of the Ianverse; see aiso BGR, BI, EFI, MMM, PFI, RGE, SUB, TRF;
sec particular type of FIN for refereu.es; pp. 3.1-3.3, 4.1-4.7, 5.1-5.6,
6.1-6.3, 9.3, 10.15, 12,2-12.4,
I/0 Input and Output; sce part F of references; pp. 12.1, 13,2,
NI INverse Iteration; see also EVV, PFS, SYI; (E-Rl,-R2,-18]; pp. 4.2, 10.4.
irp Improparly Posed Problem; see also EAN; [e.g., 55); p. 10.3.

ITR ITerative Refinement; see also EAN, FIN, SUB; [e.z., 64,66}; pp. 2.2,
4.1, 4.4, 9.4, 10.4.

LP Linear Programminig; see also CAP, ECM, EFI, MMM, PFI, THP; [4, 32, 62, 73,
75, 78 (SMO-1,-14,-17),96, 112 (SMY-i,-3,-6,-7,-10,-12,-15), 121, 127;
G-31,-43}); pp. 1.2, 3.1-3.3, 4.5, 5.3-5.6_ 10.14-10.15,

M-MAT M-MATrix; see also CAP, CMM, DID, NAM, PDE, SYP; [e.g., 101, p. §5; 112*-
pp. 10.5-10.8.

MEH MEmory Hierarchy; see also CAR, MOP, TAS; [e.g., 122; F-44,-45); pp. 4.2~4.4,
8.3’8-1” 901’ 11'1“1103, 1201‘1204, 1311-13030

MMM Method of Modified Matricez; see also ECM, EFL, ERM, FIN, PFI; (4, 8, 45
(pp. 79, 84) 52, 78 (SMG-12), 96, 112 (SNY-8), 116-119, 121; G-1

through -3, -19, -20, -31}; pp. 4.4-4.7.
duced fram }
g:ft' 0.\:'aﬂublo cony.
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MOP Macro-OPeration; sce also FIN, SMA, SUB; pp. 4.3, 4.6, 5.2, 6.4,

MRA Matrix Reducibility Algorithm; see also BLT; {25, 113; G-6,-10,-11,-20,
-29]1; pp. 1.3, 8.5, 10.7-10.12,

NAM Nodal Admittance Matrix; see also CAP, CCD, CMM, DID, M-MAT, MMM, SYP;
[eogo 'y 9’ 11’ 16’ 17]; ppo 1005—1008‘

NLL NonLincar Equation; sec also CAP, PDE, SDE; [19, 74, 120; E-R3];
pp. 2.1-2.4, 10.1.

PDA Pivoting on the Diagonal in Arbitrary order; see alse DID, SYP?; {e.g., 71,
79, 80, 96; part G); pp. 4.2, 6.1-6.4, 8.1-8.5, 9.1,

PDE Partial Differential LEquation; see also BLD, BIM, BMM, CAP, CGM, DID,
FEM, SOR, sYp, TOL; (1, 10, 18, 2i-24, 26, 28, 39, 61, 74, 79, 80, 82,
93, 101, 102, 104, 106, 112 (SMY-16); G-21}; pp. 3.1, 3.3, 7.4~7.5, 12.1,

PON Pivoting down the Dizgonal in Hatural order; see also DID, FIN, FDA, PFS,
SFP, SYP’ THP, TRF; pp. 203"2.1‘, 602' 501"504, 601“'6;3’ 701"7.5, 1202"12c(50

I O SO
ML B R e
PP O A8 ARt Wt

PFI Product Form of the Inverse; see also BIY, ECM, EFI, FIN, MMM, SMA;
[eog-, 73. 121; G“31,"43}; ?pe 3-2, 303’ 4.5"!’07’ 5'3"5060

PFS Pivoting For Size; see riso INI, ITR, SYI, THP; [e.g., E-R1l, ~R2];
pp. 1.3, 4.2, 5.1, 5.4-5.6, 6.4-6.5, 7.1, 9.3, 10,4-10.5, 12.3-12.4.

Ay e bt~

PRO PROgramming; see also CAP, CAR, MLH, SFP, SHA, SPP; [e.g., 40, 78, 112;
F-28,-40}; pp. 1.1, 2.3-2.4, 3.1-3.3, 6.2, 9.4, 10.12, 13.2-13.3.

PSA Power System haalysis; see also CAP, CCD, DID; {54, 71, 72, 78(SMO-6,
-8,~9,~15), 79, &0, 83, 91, 98, 112 (SMy-4, -13); $-13,-17,-22,-36];
pp. 2.2, 3.1-3.3, 6.1,

RGE Row Gaussian ¥iimination; see also EFI, FIN, SMA, TRF; {e.g., 51, 83,
96, 98]; ppo 2«&) (‘01’ 4'3' 502’ 504-505, 12‘3"‘1204a

SCA SCAling; see ziso EAN, SUR; [e.g., 5, 6, 15, 33, 88-20, 112(SMY-19);
113]; pp. 4.2, 6.4, 20.1~10.2, 10.4, 10.13-10,15.

SDE Stiff Differential Equations; see also CTCD, NLE, PDE; [4C, 41, 56, 78

SFG Signal Flow Graph; see also SPP; [124-126]; p. 8.4.

SFP Symbolic Factorization Program; see also BSM, SFG, SPP, SSI, TLP;
{40, 78 (SMO-17), 112 (SMY-2,-9,-13)]}; »p. 2.4, 4.2, 10.7-10.12.

SIAM Society for Industrial and Applied Mathematics; pp. 10.2-10.3,

SIG.UM Special Irmtercst Group in XUmerical Mathematics; see also ACM; [67];
p. 10.1.
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Sparse Matrix Alporithm; sec also B1F, LIM, BMM, BGR, CGM, EFI, INI,
1TR, DM, PFL, Pi's, RGE, SPP, SOoR, TDL, THP, TRF; [ec.g., 78, 112];
pp. 2.4, 3.1-3,3, 4.1-4.7, 3.1-5.6, 6.2-6.5, 7.1-7.5, 10.5-10,12,

Sparse Matrix Oxford confcrence; [78); pp. 1.2, 2.3, 3.1-3.2, 4.4, 6.1,
6.3, 7.3, 10.6-10.7.

Sparse Matrix Yorktown conference; [112]; pp. 1.2, 2.4, 3.1, 3.3, 4.4,
7.5, 11.2, 12,1,

Strongly liplicit Method; sec also BIM, BLD, BMM, PDE, SOR, TDL, TRF:
(22, 23, 93, 104, 112 (SMv-0)): pp. 3.1, 3.3, 7.5, 12.1.

Sucecessive Over Relaxation; sce also BIM, PDE, SIM, TDL; [e.g., 101;
E-R2: ¥-34,-37,-42}; p. 9.1,

Synbolic Proczessing Programs; sce also SFG, SFP; [125, 126]); pp. 7.5, 8.4.
Sparseness Structurc Information; see also BSM, SFP, TLP; {e.g., 72, T8
(8)10”6}]; pp’ 2&3"2.1‘, 3.2. [’.2’ 6w1’ 604’ 7.1-7-5’ 801-806’ 9-3-9'4.
1202’12.40

STructvral Mechanics; see also BGR, BLD, CAP, CGM, DID, FEM, PDE, SYP;
[33-35, 48, 49,57-60, 65; 76 (sMO-2,-7), B4, 85, 92, 102, 112 (SMY-11,-18);
8~24)s pp. 1.2, 3.1-3.3, 6.4, 7.3, 7.5,°9.4, 10.14,

SUBstitution; see also FIi, ITR, SMA: pp. 4.1-4.7, 5.2-5.4, 12,2-12.4.
SURvey; see alsc CAP, LAN, EVV, PDE, SMA; (19, 11, 16, 21, 24, 28, 30, 31,
42, 45, 46, 50, 52-%6, ¢1, 67, 74-78, 82, 91, 96, 98, 101-103, 105,
109-112, 119~130; E~R1,-R2,-R3,-3,-9,-17,-29; F-2,-7,-9,-17,-26,-28,-32,-35,
~40,-44 through -47; G-23,-26,-28,-29].

SYmmetric Indefinite; see also BGR, FIN, INI, ITR, PFS; (13, 1l4; E-R],
"Rz’ -8. “25]; ppc 402, 6.4-605’ 1004-1005.

SYmmetric and Positive definite; see alsa BIF, CGM, DfD, PDE; [e.g., 78
(sM0-6) , 79, 80]; pp. 4.2, 6.1-6.4, 7.1-7.5, 8.1-8.4, 9.1,

Template of Active Sterage; see also BLD, BMM, FEM, PDE, SOR, SFP, SSI;
ppo 8.3, 12.2_12.40

Tri-Diagonal Like; see also PDE, SYP, TDM; (10, 21, 28, 39, 79, 82, 101,
102, 106; G-9,-21); pp. 7.4, 8.3, 9.1,

Tri-Diagonal Matrix; see also BMM, EVV, PDZ, TDL; [e.g., E~-Rl, -R2]; p. 7.2.

THreshold Pivoting, see also EAN, LP, PFS, SCA, SMA; [4, 13, 14, 73, 75,
78, 96, 112, 127]); pp. 1.3, 2.3, 5.5, 6.4, 9.3, 10.14-10.15.

Threaded index List with Pointers; see also BSM, SFP, SSI; e.g., 72, 78
(sM0-3,~6), 112(S»Y-7,-9,-10,-13,-15)]; pp. 2.3, 2.4, 3.2, 3.3, 6.1, 8.1.

TRiangular Facterization; sce alsc BGR, BIF, EFL, FIX, PFI, RGE, S¥P;
{e.g., 40; E-R1,-R2]; pp. 2.3-2.4, 3.2, 3.3, 4.1, 4.3, 5.1-5.2, 10.5-10.13.
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C. JAuthor List

B A
e o

Akyuz, F. A3 [G-35); p.12.3. Corlitz, R, M.; [F-15]. |
E: Carpentier, J,.; [C-13).
i X Allvood, R.; [78(SM0-2)}: p.3.2.
.: : Ay, G. G.i (G-15); p.12.3. Carre, ::3?'3.{38 (s20-13); G-21}; pp. 3.2, 7.4,
Anderson, J. P [F-14]. Chang, A.; (112 (SXY-13)); pp. 2.4, 3.3,
e Amms, L. 3.5 {335 p.9.0 Chartres, B. A.; [F-8]. ‘
3 pahkenazi, V.3 [78(540-5)); p.3.2, Chazan, b.; (F-37].
Babusla, 1.; [2,3); p.20.3. Cien, T. C.j [F-15, -47); p. 11,3, I
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QUESTIONS AND COMMENTS FOLLOWING WILLOUGHBY'S PAPER

QUESTION: How big a problem can GMSO handle?

WILLOUGHBY: The biggest problem we've handled so far was
1,024 by 1,024, Afterclever genceration, not of the long code but of the
sparscncss structurc for the triangular factors (re: Albert Chang), the
solution for the 1,024 by 1,024 for the factorization and back substitutions
on the IBM model 9) required . 75 scconds, However, it took four minutes
to get the program to do it in . 75 sccond, so if you're only going to do it
once you have to say four plus minutrs, That time can be greatly reduced
by clever ordering., Typically we're used to working with scveral hundred
very sophisticated cquations and not masscs of very simple cquations,

You could go up to about 1000 o» beyond if you used Chang's approach

because then all you do is gencrate the code as you go.

QUESTION: With regard to the future of hardwarc in handiing
structural problems, I noticc that you did not mention any of the possibili-
ties of micro-programming where the programmer might be able to con-
struct a computer image to handle his kind of problem. Arc you envision-

ing anything like this?

WILLOUGHBY: It is certainly fcasible to do that but whether or not
it is accepted to do that is somcthing I cannot comment on, It's cer ninly
| fcasible--technologically. Economically and legally I don't know the

answer to that and [ cannot comment further,

QUESTION: Is IBM intorcsted in going to parallelism in arith-

metic units such as Iliac has or is that a question I shouldn't ask?
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WILLOUGHBY: Parallelism is a poor word to usce; I prefer to usce
multi-processing., The word parallelism, unfortunately, means one thing
Leing split up into many things; but it should also include many things being
split up into many things as, for example, when you arc solving a great

big problem, a little dinky problem, and cverything elsce in between.,  The
word parallelism is a very dangerous word., We want to understand, in
structural engineering, for example, what arc the avoidable bottlenecks |

in present speed of computation, i. e., getting things in and out. The trouble
with parallclism is that you've got a thousand adders all working but where

arc you going to get all the stuff to keep all those adders busy all the time.

QUESTION: Have you dealt with the problems nf band reduction

or packing of data and unpacking of data, climinate zcrocs and so forth?

WILLOUGHBY: No, but I believe that McCormack is going to comment

on that when he gives his paper later this weck.

QUESTION: You mentioned the work of Kron, I wanted to ask

your opinion on his work and do you think it's worth further pursuit?

WILLOUGHBY: This (the usc of clectrical engineering techniques for
structural problems) is something which has been thoroughiy explored (by

G. Kron and later by Fenves and F. Banin).

QU ESTION: Through represcentation of matrices in the sparscely
populated form, there arc two main advantages to be gained. Number one
is the stt;ragc. You can compress very large sparsc matrices in to little
space. The other advantage is the speed. Since you are eliminating all the

zcroes from the computation, your iteration time or cycle time decreases con-
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siderably. Could you give us a comment on the relative importance of the
twd factors. If you arc using, for example, a purely iterative scheme
like Gauss-Siedcl, maybe it takes longer, but then you never fill up your
matrix, Whereas if you arc using any of thc techniques you mentioned,
you start {illing it up and you never know really how much it is going to

fill until it's too late.

WILLOUGHBY: You made a very good comment and I'll try to answer
the statement about the tradeoff. You know with certainty how much work
you have to do pér iteration step., In Gauss-Sigdcl, for example, you don't
fill anything in. Therc is a whole spectrum of iterative methods., First,
we have what is called the point relaxation wherc you just solve cach
individual cquation for the diagonal clement and then update the solution
cither as you go along or all at the end, This approach has been then
clevated to mcthods called alternating direction in which cach basic step

is something that looks like a triadiagonal matrix which you can solve

very fast. This is a little closer to solving the equation, but again you
know exactly how much work is involved. There is also work from partial
differential equations which is called multi-line iteration where you simul-
tancously solve information on several lines which again is closer to direct
rnethods. So, there is a whole transition here and the tradeoff is very
simple. As you get closer to direct methods, the number of iterations
that you have to make through the process to get the answer decreascs,

but you get uncertainty as to how much storage is required and how many
operations per itcration you'd have to do, At the other end of the spectrum
is simple relaxation for which the number of times you have to iterate kills

you. To estimate how many iterations arc required, you have to have ways
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of analytically estimating the rate at which the error vector is decrcased.
This is called the eigenvalue estimation problem. In a recent work by
Stone, the author goes kind of whole hog on a new approach which he's

used in petroleum problems including coupled nonlincar systems, It works
but the eigenvaluc analysis is very difficult, The results of studies on
model problems were that it was competitive with the very best routines, -

It didn't degrade with nonuniformity, irregular boundaries and all the

things that practical problems are pronc to, The iterative approach is
definitely a possibility and if you could guarantce that the rate of iteration is

good enough, then I'll take it every time; but you'd have to guarantee it to me.

QUESTION: I'd like to make just a brief comment on the business
of looking at these problem solutions and their cconomic cffects. We find
in engineering application, cspecially in large scale problems, that the
time required to generate the inputs, the time required to form the
equations, to form the matrix, has now beccome a very considerable part
of both the engincering man labor and the machine time in setting up cqua-
tions to be solved. Have there been studies in the combination of prepro-

cessor and simultancous solution during the process?

WILLOUGHBY: Yes, that has becen studied and is being studied very

heavily at the presc... time,

QUESTION: I'd like to understand how you make decisions in the
way of sctting this (GNSO) up as to which clements arc zcro and which are
not, I found, for cxample, that if I have to make that decision I might as

well rnuleiply. f#t takes about the same time.
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WILLOUGHBY: Where the zeros and nonzeros occur doesn't depend
on what the numerical values are for the nonzeros. The SOLVE code is
generated by GNSO for a whole class of matrices with the same sparscness

structure and can be used repeatedly.

COMMENT: The reason I am asking this question is because I
have in mind a dynamics problem in structural analysis. Now if this
procedure of eliminating multiplication by zcrol is a gencral one which
could be applied to such things, we could realize big savings. It would

probably require a very significant effort, however, to generate something

like that for a gencral structural problem.

WILLOUGHBY: I know what you're saying, but I don't know the answer
since I do not know in detail what computations are involved in structural
analysis. You have many dcgrees of freedom at cach node and in cach
branch and the mechanization of all that in this context is not cbvious. I
think there will be a lot of work involved. If someone was wiliing to do it
and did have this context of solving the samc problem repeatedly with the
same structure, there may be a very nice payoff. This is c¢specially true

if J, the Jacobian, is known to have this positive definiteness, diagonal
dominance or something wherc you know ahecad of time that you don't have

to pivot for size. I don't know that you're going to realize much saving
because some of your structural engineering problems are two and threce
dimensional and no matter how clever you order things, the matrices do fill
in. Extensions of band matrix techniques by Bamford, Jennings, McCormick

and others are probably morec suitable than the GNSO approach for many

multi-dimensional structural problems.
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THE DEVELOPMENT OF LARGE SCALE DIGITAL COMP
CODES FOR PRODUCTION STRUCTURAL ANALYSIS

D. N. Yates*
T. J. Vinson™
W. W. Sable***
Missile Systems Division, Lockheed Missile and Space Company

All too often computer codes, particularly in the finite element domain,
are constructed by the researcher and professional programmer without sufficient
cognizance being taken of the requirements of those individuals who would use
the code as a production analysis tool. In addition to the fundamental require-
ment of accuracy of results, there are certain features that must be embodied

in every computer code that is to be effectively and efficiently used for daily
analysis problems.

This paper discusses input, output, and engineering details that should be
incorporated into each code as it is written and the work performed within the
Missile Systems Division of Lockheed to develop such capabilities. A range of
data input techniques, including automatic mesh generation, data card, and
FORTRAN statement should be provided as standard features; while a variety of
output features such as pictorial and graphical playback of the model, deflected
shapes, and stresses, along with a number of output formats are considered
mandatory in order that a given program's potential be fully exploited and
engineering errors minimized. The program should be constructed in a modular
fashion to enable the user to Quickly adjust and update the program functions
and capabilities to suit the needs of rarticular analysis problems. Engineer-
ing realities such as large displacement and elastic-plastic options should be

incorporated whererer possible to extend the problem solving range of a given
ccde.

Finally, the development of a number of highly automated programs demon-

strating the above features is presented, and research being currently pursued
summarized.

*
Group Engineer, Vehicle Shell Systems/Loads, Structurecs & Dynamics

Stress Engineer, Vehicle Shell Systems/ Loads, Structures & Dynamics

Structures Engineer, Vehicle Shell Systems/Loads, Structures & Dynamics
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SECTION 1
INTRODUCTTON

The interest o' the writers in the development of large scale advanced
digital computer codes stems from the nature of our duties at Lockheed. Our
department is responsible for the structural integrity of all produchts of the
Missile Systems Division of the company; a range of products that encompasses
the Polaris and Poseidon FBM systems in addition to advanced cowu.rarts such as
ULMS, SCAD, and various other classified programs. Our interests include:
ballistic missile structures, reentry systems, motors, ground suppcrt equipment,
and flight control systems. As an adjunct to such activities, we are also called
upon to perform special studies for other Lockheed companies and to analyze
various other components of weapons systems such as launcher concepts, submarine
structures, and propulsion systems. Finally, we have of late found our field
of interest being radically widened by the application of our programs to the
analysis of structures outside of Lockheed's traditional aerospace market by
means of technology contracts with other companies.

The nature of our work, together with its demands that we be fully respon-
sive in terms of rapid results to complex problems, led us, in 1965, to start
development of a series of highly user-oriented computer codes with primary
emphasis being placed on uaccuracy of results, speed of input/output, program
flexibility and modularity, ease of program extension and update, and adequate
program size to cope with all potential problem demands. This commitment to
aavanced techniques — a commitment which is being continually expanded and
accelerated — initially led to an investigation of available programs and their
applicability to our problems. We were fortunate in that Lockheed's Solid
Mecianics Laboratory at Palo Alto had developed u strong capability in the area
of finite difference techniques for shell structures and this led to our obtain-
ing codes such as BOSOR 1 developed by Bushnell(l . Subsequent cooperation
with the Solid Mechanics group %e? to th? gevelopment and acquisition of more
advanced codes such as BOSOR 2 and 3(3 genera?eg by Bushnell for chells of
revolution, STAGS developed by Almroth and Brogan L) for collapse analysis of
shell structures subjected tQ generalized loadings, and the STAR code developed
by Sobel, Silsby and Wrenn(53 for transient response analysis of shells of
revolution. This range of programs has given us excellent capability in the
area of finite difference analyses of shell structures, and these programs
have proven their worth during the course of the past six years when applied
to oz gesine of engineering problems.

In the domajin of finite element analysis — an area where our interest is
very high — we gained our initial capability, as have so many people in the
aerospace industry, by obtaining the program written by Wilson?é) for the
. analysis of axisymmetric solids. We were fortunate in having Prof. Wilson
located close by at Berkeley and in developing an active association with him
which still continues. Other programs initially obteined included the SABOR
shell series dexeloped at M.I.T.(7,8), the Rohm and Haas axisymmetric code(9),

the FRAN(10) and STRESS(11) frume codes, and a frame program written by
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Hhetstone(lz). Our rsquirements in the area of mixed structures, by which
nomenclature we define an assemblage of links, beams, membranes, plates, and
solids, next demanded that we obtain and develop a range of programs designed

for this class of problems. This need led, in 1966, to a iig?raet wxth Prof. Kamel
of the University of Arizona to develop the MINI-ASKA code This association
has proved of great value and is, happily, still active today. Other advanced
mixed structures codes subsequently obtained were t?e ?EXBAT series developed by
Loden(1l)and the SNAP series developed by Whetstone 15 These codes have also
been successfully used in the course of our projects. Finally. a series of codes
were developed or obtained to perform the analysis of such specialized problems
as creep buckling, nose tip anulyses, and orthotropic properties determination.

In essence, therefore, we have found it most advantageous to mainly obtain
our basic codes from university and research scurces based on active association
and cooperation with such sources, and direct our own major research and
development activity to the extension of such programs to a highly automated
production status. It is to the discussion of these extensions, and the
techniques employed therein, that this paper primarily addresses itself.

We note that during the course of our research and development we encountered
a large number of programs which were found to possess little utility and potential.
Our reasons for such conclusions are fully discussed later in this paper when we
outline our requi:ements which any of our codes must fulfill in order to qualify
as a production tool. Assuming that such programs had to be discarded, we concen-
trated our research efforts on the remaining range of basic programs and attempted
to bring these to a highly automated, reliable, and usable form. is particular
area of computerized structural analysis has all too often been neglected, but
it is here that we have found that the large scale program has the greatest benefit
and impact. Our basic squipment to achieve this end has heen three Univac 1108
computers, a range of smaller computers such as the SDS 910, and - as a major
factor - a Stromberg-Carlson L4020 electronic plotter.

With tnis basic, and expensive, equipment came a set of responsibilities
which our group had to develop in order to efficientiy exploit its full potential.
Thece may be summarized as:

o A strong background in the theory and application of finite element
and other numerical techniques.

o Wide experience with a program, its limitations, and its advantages.

0 A high degree of knowledge and skill regarding the camputer system
in use and its limitations.

o An excellent level of programming and modeling ability and experience.

o An ability to rapidly generate or incorporate new elements, vechniques,
or program modifications,

o An expertise in computer graphics and plotter programming techniques,
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o An ability to equate mathematical techniques to engineering realities.

) The capability and duty to always generate hand or approximate
solutions to check complex mathematical models.

Such responsibilities as these are as often neglected by the program user
as are the later set of responsibilities cited with respect to the basic program
writer. All too often engineers use an advanced program with no knowledge of
its limitations, accepting its answers on faith rather than fact, and probably
having rad it solw: the wrong problem in the first place. With respect to this
final point, we believe that it is imperative that a pictorial playback of the
computer model input be provided to eliminate such errors and, additionally, that
as much output as possible be provided in a visual format with a minimum of data
reduction. Computer run times rapidly fade intc insignificance if three weeks
are required each side of the run for input data preparation and output reduction
and assimilation, even making the tenuous assumption that errors can be rapidly
detected and corrected without pictorial displays of the modeil.

The impact of the highly automated computer codes on the engineering
organization and operation of a company are substantial. At Lockheed the
traditional concept of designers and structural analysts as separate entitier,
each functioning in a narrow field of interest, has largely disappeared, If the
computer and its high speed plotter can rapidly and accurately both draw and
analyze a structure there is little point to the designer drawing the structure
and then transmitting it to the structural engineer for analysis. In this regard,
it is noted that the SCLO20 plot speed is approximately 0.3 seconds/plot with good
resolution. In simiiar fashion by coupling programs thermo-structural analyses
can be performed as a single step rather than as individual thermal and structural
analyses. Similar changes have occurred in the area of coupling dynamic response
and structural analysis.

Finally, a major change has occurred in the manner in which a proposal or
oreliminary design is generated and analyzed. Now a wide range of structural
concepts can be rapidly drawn, analyzel, and documented within the narrow time
constraints imposed by a customer, rather than only analyzing perhaps two, or
at best several, design concepts. Withuut the ability to input and pictorially
playback a model in a matter of hours, analyze that structure within minutes,
providing pictorial and graphical output shortly thereafter, and at the same
time yielding accurate answers, a program cannot claim to be a production tool
for structural engineers. Of course, many structures are far too complex to
ever achieve this goal but, all too often, programmers or engineers are al fault
for not striving to a‘tain such a nirvena, Our group at Lockheed has set itself
such a goal since 1965 and we will present results to date after first discussing
overali. program requirements as we view them, a short study of analysis costs
and output demands, the need for modularity, and our present progrem capabilities
within the Missile Systems Division of Lockheed. Finally, we conclude with a
Summary of our present research in the area of advanced computer programs,
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SECTION II
OVERALL PROGRAM REQUIREMENTS

Aerospace structural analysis places heavy demands on large scale
digital computer programs. We are faced with complicated structures subjected
to unusual and severe environments with the added constraint that weight must
be minimized. To verify the structural integrity of a missile component, and
the degree to which it approaches an optimum, proper account must be taken of
plastic deformation, geometric norlinearities, stability, thermal loadings,
fatigue, and, quite frequently, rather strange material properties. Historically,
designers do not produce concepts on the basis of our stress analysis capability;
rather, a designer must utilize the most advanced materials and techniques
available to him, consistent with cost and manufacturing constraints. It is
tnorefore the responsibility of structural engineers to develop znalysis tools
of the level of sophistication required to provide adequate support and guidance
to the design organizations in this operational context.

Our philosophy toward incorporating a new method of analysis .s quite
simple; if it affords an improvement over current methods, we must use it.
However, we cannot always afford to wait for such improvements, but must employ
existing analytical tools. Hence, a bilinear elastic solution is perfectly
anceptable in the absence of a sophisticated non-linear Prandtl-Reuss technique.
And we will, in geeral, prefer a highly reliable approximation to an unstable
"exact" solution. A lack of theoretical nicety cannot cause us to refuse to
undertake an analysis. We must find a legitimate approach to a given problem
and employ it, for design scheduies cannot wait on long-term research.

Spacecraft and missile structures are often designed on the basis of
ultimate strength, that is; the ability to sustain load past some permanent
deformation criteria to actual failure of part. Since few materials exhibit
linear stress-strain curves to failure, an adequate analysis of a yielding
structure should include some approximation for changing stiffness and load
distribution. Iterative and incremental approaches are used currently in the
Wilson and MINI-ASKA codes, respectively. Incipient or existing yield conditions
are detected according to some criterion, such as Von Mises, Maximum Shear Stress,
or Maximum Strain, and arezs designated as critical cause alteration or reform-
ulation of the stiffness matrix. A recent contract for the analysis of thermal
fatigue led to the development of a step solution accounting for element yielding,
thermal degradation of materinl properties and shifting of the yield surface.

The results ¢f this approach have been-extremely encouraging and the program is
' to Le described in detail in a forthcoming paper. This problem, illustrated in
Figure 1 makes obvious the necessity of graphical output when on: considers that
a complete strain history of every element must be maintained throughout several
thermal loading cycles for each of 1200 elements. We are not aware of the exist-
ence of a working truly nonlinear analysis providing improved accuracy over.this
tecnnique without great cost in capacity and reliability.
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FIGURE 1: STRESS-STRAIN HISTORY OF SIX FINITE
BLEMENTS OF AN ATRCRAFT D1SC BRAKE COMPONENT.
1/22 SYMMETKRICAL SLICE SIDWN, LOADING WAS
THERMAL TIME HISTORY FOR ONE BRAKING CYCLE
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An incremental solution is a basic adjunct of any finite element program.
Structures exhibiting geometric, as well as material, nonlinearities are not
uncommon in missile components; for example: glass motors, pressure vessels,

and movable nozzles, A single pass iinear solution based on small deflection
theory i simply unsatisfactory ir the analysis of a geodesic or tori-spherical
head, since some deflections actuall— reverse as the loac increases. The C3
Poseidon motor dome model, for examp.:, yielded a stable solution only when
injtial load steps were cut to one-sixteenth of operating pressure. Another
exemple is threaded or flanged joints in which contact surfaces and bearing
points change during load application., Sophisticated finite difference programs
have come to us for shell-type analysis; but nozzles, bolted joints, threaded
Jjoints, etc., require the geometric generality afforded as yet only by finite
element programs. To meet this requirement we have, therefore, Ceveloped a
special one-layer element which is introduced between such flanged joints.

This element is totally incapable of resisting tension or compression until this
strain reaches-l.0, at which point its campressive motion is stopped and flange

faces, now bearing, accept load.

Stability analysis is still very much the province of finite difference
methods, although ve are currently pushing research in the finite element domain
also. We feel that capability for shell stability inalg?is here at Lockheed is (L)
very high. BExtensive use of programs by Bushnell (1,2, and Almroth and Brogan
of the Palo Alto group during the Poseidon program has shown that large-scale
finite difference programs are now bcyond the research tuol stege and that they
can be of great benefit in practical production analyses. Examples of results
of such programs compared with actual test results ars presented in Table 1. The
STAGS program has provided us, for the first time, with a viable method for
stability analysis of a geometry reproducing an actual produ:tion item, i.e.,
an assemblage of rings, stiffeners, doors, and cutouts held together by pieces of
tin, whereas in the past, such structures have received the misnomer of ¥Shells!
and the misfortune of being analyzed as such. Both BOSOR 3 and STAGS are
relatively new and are now undergoing the only reliable checkout procedure
-~ extensive use, It is anticipat~1 that these codes will be widely employed,
with associated production-oriented development, during subsequent Leckheed
contracts, although present usage is inestimably aided by close working association

with the authors.

Exotic materials abound in aerospace work. Glass-wound motors, carbon fiber
wrapped pressure vessels, plywood nose-fairings, honeycemb support structure,
nearly incompressible propellants, and high anisotropic reentry vehicle nose tips
continually challenge the analyst to provide constitutive relations iaving a
reasonable relationship with reality. Flexibility in this area is extremely
valuable. Shell programs normally contain a set of subroutines for several standard
wall constructions, while our three-dimensional solids programs (13)(16) have
been upgraded since their acquisition to include orthotrepic materials for
standard applications such ss reentry vehiclea and pressure vessel or heat exchanger

tubesghests.

Pernaps it would seem at this point that we expect each computer program
we receive to be quite broad in scope. Certainly, a tool capable cf zolving all
our structural problems would be appreciated, but we are not so naive as to
expect a structural resecarcher to examine all aspects of all possible applications

178




{1 ede LWIE 2o o s N e L I

of his program prior to its release. S%ill we labor undar the somewhat tenuous
assumption that structural research has structural applicaticn as its end and
this calls for certain concessions on the part of the programmer, usually at
very small cost. A useful production program must be tiexible and a requirement
for continual dependence on the author for slight changes ensuies that a given
code will rapidly fall into disuse,

The experience or our group has been that many programs have to be discarded
because they have been generated without a sufficiunt degree of awareness of user
requirements and, in too many cases, possessing so many limitations in terms of
accuracy, usability, and applicability as to render them virtually useless for
a practical range of engineering problems. Examples of such limitations are:

e Programs which sacrifice usability for speed of solution by, for
example, imposing narrow allowable band widths,
We have to solve general structures, not tall slender towers, and
such narrow banding techniques are anachronistic at best and
unacceptable at worst.

(o} Programs with incorrect or outdated elements,
Too often we find that mony Timdte element aualyses are useless
because of this.

(o} Programs which prove impossible to understand, modify, or update.
Such techniques may provide job security in the short term, but
ensure a rapidly obsolete program in the longer term.

o Programs which do not campletely solve the problem.
For a stress analysis program to give forces and moments for 2000
elements rather than stresses is not acceptable.

o Programs with very inefficient storage and assembly and solution

techniques.
Our problems are large and must be solved rapidly and efficiently.

o Programs requiring a large and inflexible data input scheme.
IT structures are mathematically describable then FORIRAN should
be used as input.

o Programs where the user has no warning of any numerical problems
being encountered in solution.
There 1s no point in inverting an ill-conditioned or singular
stiffness matrix,

o Programs which cannot be highly automated.
We cannot afford the time or errors inherent in hand checking the
large quantities of printed output inherent in most finite element
analysis programs.
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